MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg2 Structured version   Visualization version   Unicode version

Theorem ply1divalg2 23898
Description: Reverse the order of multiplication in ply1divalg 23897 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divalg.g3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
ply1divalg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
ply1divalg2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Distinct variable groups:    ph, q    B, q    D, q    F, q    G, q    .- , q    P, q    R, q    .xb , q    .0. , q
Allowed substitution hint:    U( q)

Proof of Theorem ply1divalg2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (Poly1 `  (oppr `  R
) )  =  (Poly1 `  (oppr
`  R ) )
2 ply1divalg.d . . . 4  |-  D  =  ( deg1  `  R )
3 eqidd 2623 . . . . . 6  |-  ( T. 
->  ( Base `  R
)  =  ( Base `  R ) )
4 eqid 2622 . . . . . . . 8  |-  (oppr `  R
)  =  (oppr `  R
)
5 eqid 2622 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
64, 5opprbas 18629 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
76a1i 11 . . . . . 6  |-  ( T. 
->  ( Base `  R
)  =  ( Base `  (oppr
`  R ) ) )
8 eqid 2622 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
94, 8oppradd 18630 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  (oppr `  R
) )
109oveqi 6663 . . . . . . 7  |-  ( q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r )
1110a1i 11 . . . . . 6  |-  ( ( T.  /\  ( q  e.  ( Base `  R
)  /\  r  e.  ( Base `  R )
) )  ->  (
q ( +g  `  R
) r )  =  ( q ( +g  `  (oppr
`  R ) ) r ) )
123, 7, 11deg1propd 23846 . . . . 5  |-  ( T. 
->  ( deg1  `  R )  =  ( deg1  `  (oppr
`  R ) ) )
1312trud 1493 . . . 4  |-  ( deg1  `  R
)  =  ( deg1  `  (oppr `  R
) )
142, 13eqtri 2644 . . 3  |-  D  =  ( deg1  `  (oppr
`  R ) )
15 ply1divalg.b . . . 4  |-  B  =  ( Base `  P
)
16 ply1divalg.p . . . . . 6  |-  P  =  (Poly1 `  R )
1716fveq2i 6194 . . . . 5  |-  ( Base `  P )  =  (
Base `  (Poly1 `  R
) )
183, 7, 11ply1baspropd 19613 . . . . . 6  |-  ( T. 
->  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) ) )
1918trud 1493 . . . . 5  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
2017, 19eqtri 2644 . . . 4  |-  ( Base `  P )  =  (
Base `  (Poly1 `  (oppr `  R
) ) )
2115, 20eqtri 2644 . . 3  |-  B  =  ( Base `  (Poly1 `  (oppr `  R ) ) )
22 ply1divalg.m . . . 4  |-  .-  =  ( -g `  P )
2320a1i 11 . . . . . 6  |-  ( T. 
->  ( Base `  P
)  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
2416fveq2i 6194 . . . . . . . 8  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  R
) )
253, 7, 11ply1plusgpropd 19614 . . . . . . . . 9  |-  ( T. 
->  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) ) )
2625trud 1493 . . . . . . . 8  |-  ( +g  `  (Poly1 `  R ) )  =  ( +g  `  (Poly1 `  (oppr `  R ) ) )
2724, 26eqtri 2644 . . . . . . 7  |-  ( +g  `  P )  =  ( +g  `  (Poly1 `  (oppr `  R
) ) )
2827a1i 11 . . . . . 6  |-  ( T. 
->  ( +g  `  P
)  =  ( +g  `  (Poly1 `  (oppr
`  R ) ) ) )
2923, 28grpsubpropd 17520 . . . . 5  |-  ( T. 
->  ( -g `  P
)  =  ( -g `  (Poly1 `  (oppr
`  R ) ) ) )
3029trud 1493 . . . 4  |-  ( -g `  P )  =  (
-g `  (Poly1 `  (oppr `  R
) ) )
3122, 30eqtri 2644 . . 3  |-  .-  =  ( -g `  (Poly1 `  (oppr `  R
) ) )
32 ply1divalg.z . . . 4  |-  .0.  =  ( 0g `  P )
3315a1i 11 . . . . . 6  |-  ( T. 
->  B  =  ( Base `  P ) )
3421a1i 11 . . . . . 6  |-  ( T. 
->  B  =  ( Base `  (Poly1 `  (oppr
`  R ) ) ) )
3527oveqi 6663 . . . . . . 7  |-  ( q ( +g  `  P
) r )  =  ( q ( +g  `  (Poly1 `  (oppr
`  R ) ) ) r )
3635a1i 11 . . . . . 6  |-  ( ( T.  /\  ( q  e.  B  /\  r  e.  B ) )  -> 
( q ( +g  `  P ) r )  =  ( q ( +g  `  (Poly1 `  (oppr `  R
) ) ) r ) )
3733, 34, 36grpidpropd 17261 . . . . 5  |-  ( T. 
->  ( 0g `  P
)  =  ( 0g
`  (Poly1 `  (oppr
`  R ) ) ) )
3837trud 1493 . . . 4  |-  ( 0g
`  P )  =  ( 0g `  (Poly1 `  (oppr `  R ) ) )
3932, 38eqtri 2644 . . 3  |-  .0.  =  ( 0g `  (Poly1 `  (oppr `  R
) ) )
40 eqid 2622 . . 3  |-  ( .r
`  (Poly1 `  (oppr
`  R ) ) )  =  ( .r
`  (Poly1 `  (oppr
`  R ) ) )
41 ply1divalg.r1 . . . 4  |-  ( ph  ->  R  e.  Ring )
424opprring 18631 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
4341, 42syl 17 . . 3  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
44 ply1divalg.f . . 3  |-  ( ph  ->  F  e.  B )
45 ply1divalg.g1 . . 3  |-  ( ph  ->  G  e.  B )
46 ply1divalg.g2 . . 3  |-  ( ph  ->  G  =/=  .0.  )
47 ply1divalg.g3 . . 3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
48 ply1divalg.u . . . 4  |-  U  =  (Unit `  R )
4948, 4opprunit 18661 . . 3  |-  U  =  (Unit `  (oppr
`  R ) )
501, 14, 21, 31, 39, 40, 43, 44, 45, 46, 47, 49ply1divalg 23897 . 2  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) )  < 
( D `  G
) )
5141adantr 481 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  R  e.  Ring )
5245adantr 481 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  G  e.  B )
53 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  q  e.  B )  ->  q  e.  B )
54 ply1divalg.t . . . . . . . . 9  |-  .xb  =  ( .r `  P )
5516, 4, 1, 54, 40, 15ply1opprmul 19609 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5651, 52, 53, 55syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  q  e.  B )  ->  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q )  =  ( q  .xb  G
) )
5756eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  q  e.  B )  ->  (
q  .xb  G )  =  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) )
5857oveq2d 6666 . . . . 5  |-  ( (
ph  /\  q  e.  B )  ->  ( F  .-  ( q  .xb  G ) )  =  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )
5958fveq2d 6195 . . . 4  |-  ( (
ph  /\  q  e.  B )  ->  ( D `  ( F  .-  ( q  .xb  G
) ) )  =  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr `  R
) ) ) q ) ) ) )
6059breq1d 4663 . . 3  |-  ( (
ph  /\  q  e.  B )  ->  (
( D `  ( F  .-  ( q  .xb  G ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6160reubidva 3125 . 2  |-  ( ph  ->  ( E! q  e.  B  ( D `  ( F  .-  ( q 
.xb  G ) ) )  <  ( D `
 G )  <->  E! q  e.  B  ( D `  ( F  .-  ( G ( .r `  (Poly1 `  (oppr
`  R ) ) ) q ) ) )  <  ( D `
 G ) ) )
6250, 61mpbird 247 1  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( q  .xb  G ) ) )  <  ( D `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   E!wreu 2914   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    < clt 10074   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   -gcsg 17424   Ringcrg 18547  opprcoppr 18622  Unitcui 18639  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778  df-lmod 18865  df-lss 18933  df-rlreg 19283  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-cnfld 19747  df-mdeg 23815  df-deg1 23816
This theorem is referenced by:  q1peqb  23914
  Copyright terms: Public domain W3C validator