MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   Unicode version

Theorem 0uhgrsubgr 26171
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  S SubGraph  G )

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1058 . 2  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  ( G  e.  W  /\  S  e. UHGraph  ) )
2 0ss 3972 . . . 4  |-  (/)  C_  (Vtx `  G )
3 sseq1 3626 . . . 4  |-  ( (Vtx
`  S )  =  (/)  ->  ( (Vtx `  S )  C_  (Vtx `  G )  <->  (/)  C_  (Vtx `  G ) ) )
42, 3mpbiri 248 . . 3  |-  ( (Vtx
`  S )  =  (/)  ->  (Vtx `  S
)  C_  (Vtx `  G
) )
543ad2ant3 1084 . 2  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  (Vtx `  S
)  C_  (Vtx `  G
) )
6 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
76uhgrfun 25961 . . 3  |-  ( S  e. UHGraph  ->  Fun  (iEdg `  S
) )
873ad2ant2 1083 . 2  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  Fun  (iEdg `  S
) )
9 edgval 25941 . . 3  |-  (Edg `  S )  =  ran  (iEdg `  S )
10 uhgr0vb 25967 . . . . . . . 8  |-  ( ( S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  ( S  e. UHGraph  <->  (iEdg `  S )  =  (/) ) )
11 rneq 5351 . . . . . . . . 9  |-  ( (iEdg `  S )  =  (/)  ->  ran  (iEdg `  S
)  =  ran  (/) )
12 rn0 5377 . . . . . . . . 9  |-  ran  (/)  =  (/)
1311, 12syl6eq 2672 . . . . . . . 8  |-  ( (iEdg `  S )  =  (/)  ->  ran  (iEdg `  S
)  =  (/) )
1410, 13syl6bi 243 . . . . . . 7  |-  ( ( S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  ( S  e. UHGraph  ->  ran  (iEdg `  S
)  =  (/) ) )
1514ex 450 . . . . . 6  |-  ( S  e. UHGraph  ->  ( (Vtx `  S )  =  (/)  ->  ( S  e. UHGraph  ->  ran  (iEdg `  S )  =  (/) ) ) )
1615pm2.43a 54 . . . . 5  |-  ( S  e. UHGraph  ->  ( (Vtx `  S )  =  (/)  ->  ran  (iEdg `  S
)  =  (/) ) )
1716a1i 11 . . . 4  |-  ( G  e.  W  ->  ( S  e. UHGraph  ->  ( (Vtx
`  S )  =  (/)  ->  ran  (iEdg `  S
)  =  (/) ) ) )
18173imp 1256 . . 3  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  ran  (iEdg `  S
)  =  (/) )
199, 18syl5eq 2668 . 2  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  (Edg `  S
)  =  (/) )
20 egrsubgr 26169 . 2  |-  ( ( ( G  e.  W  /\  S  e. UHGraph  )  /\  (Vtx `  S )  C_  (Vtx `  G )  /\  ( Fun  (iEdg `  S
)  /\  (Edg `  S
)  =  (/) ) )  ->  S SubGraph  G )
211, 5, 8, 19, 20syl112anc 1330 1  |-  ( ( G  e.  W  /\  S  e. UHGraph  /\  (Vtx `  S )  =  (/) )  ->  S SubGraph  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ran crn 5115   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator