MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs2 Structured version   Visualization version   Unicode version

Theorem uniqs2 7809
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
qsss.2  |-  ( ph  ->  R  e.  V )
Assertion
Ref Expression
uniqs2  |-  ( ph  ->  U. ( A /. R )  =  A )

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5  |-  ( ph  ->  R  e.  V )
2 uniqs 7807 . . . . 5  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
31, 2syl 17 . . . 4  |-  ( ph  ->  U. ( A /. R )  =  ( R " A ) )
4 qsss.1 . . . . . 6  |-  ( ph  ->  R  Er  A )
5 erdm 7752 . . . . . 6  |-  ( R  Er  A  ->  dom  R  =  A )
64, 5syl 17 . . . . 5  |-  ( ph  ->  dom  R  =  A )
76imaeq2d 5466 . . . 4  |-  ( ph  ->  ( R " dom  R )  =  ( R
" A ) )
83, 7eqtr4d 2659 . . 3  |-  ( ph  ->  U. ( A /. R )  =  ( R " dom  R
) )
9 imadmrn 5476 . . 3  |-  ( R
" dom  R )  =  ran  R
108, 9syl6eq 2672 . 2  |-  ( ph  ->  U. ( A /. R )  =  ran  R )
11 errn 7764 . . 3  |-  ( R  Er  A  ->  ran  R  =  A )
124, 11syl 17 . 2  |-  ( ph  ->  ran  R  =  A )
1310, 12eqtrd 2656 1  |-  ( ph  ->  U. ( A /. R )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   U.cuni 4436   dom cdm 5114   ran crn 5115   "cima 5117    Er wer 7739   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  qshash  14559  cldsubg  21914  pi1buni  22840
  Copyright terms: Public domain W3C validator