MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs Structured version   Visualization version   Unicode version

Theorem uniqs 7807
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )

Proof of Theorem uniqs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 7746 . . . . 5  |-  ( R  e.  V  ->  [ x ] R  e.  _V )
21ralrimivw 2967 . . . 4  |-  ( R  e.  V  ->  A. x  e.  A  [ x ] R  e.  _V )
3 dfiun2g 4552 . . . 4  |-  ( A. x  e.  A  [
x ] R  e. 
_V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
42, 3syl 17 . . 3  |-  ( R  e.  V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
54eqcomd 2628 . 2  |-  ( R  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  [ x ] R }  =  U_ x  e.  A  [ x ] R )
6 df-qs 7748 . . 3  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
76unieqi 4445 . 2  |-  U. ( A /. R )  = 
U. { y  |  E. x  e.  A  y  =  [ x ] R }
8 df-ec 7744 . . . . 5  |-  [ x ] R  =  ( R " { x }
)
98a1i 11 . . . 4  |-  ( x  e.  A  ->  [ x ] R  =  ( R " { x }
) )
109iuneq2i 4539 . . 3  |-  U_ x  e.  A  [ x ] R  =  U_ x  e.  A  ( R " { x }
)
11 imaiun 6503 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  U_ x  e.  A  ( R " { x } )
12 iunid 4575 . . . 4  |-  U_ x  e.  A  { x }  =  A
1312imaeq2i 5464 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  ( R " A )
1410, 11, 133eqtr2ri 2651 . 2  |-  ( R
" A )  = 
U_ x  e.  A  [ x ] R
155, 7, 143eqtr4g 2681 1  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   {csn 4177   U.cuni 4436   U_ciun 4520   "cima 5117   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748
This theorem is referenced by:  uniqs2  7809  ecqs  7811
  Copyright terms: Public domain W3C validator