MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsss Structured version   Visualization version   Unicode version

Theorem qsss 7808
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
Assertion
Ref Expression
qsss  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)

Proof of Theorem qsss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
21elqs 7799 . . 3  |-  ( x  e.  ( A /. R )  <->  E. y  e.  A  x  =  [ y ] R
)
3 qsss.1 . . . . . . 7  |-  ( ph  ->  R  Er  A )
43ecss 7788 . . . . . 6  |-  ( ph  ->  [ y ] R  C_  A )
5 sseq1 3626 . . . . . 6  |-  ( x  =  [ y ] R  ->  ( x  C_  A  <->  [ y ] R  C_  A ) )
64, 5syl5ibrcom 237 . . . . 5  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  C_  A ) )
7 selpw 4165 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
86, 7syl6ibr 242 . . . 4  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  e.  ~P A
) )
98rexlimdvw 3034 . . 3  |-  ( ph  ->  ( E. y  e.  A  x  =  [
y ] R  ->  x  e.  ~P A
) )
102, 9syl5bi 232 . 2  |-  ( ph  ->  ( x  e.  ( A /. R )  ->  x  e.  ~P A ) )
1110ssrdv 3609 1  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   ~Pcpw 4158    Er wer 7739   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-er 7742  df-ec 7744  df-qs 7748
This theorem is referenced by:  axcnex  9968  wuncn  9991  qshash  14559  lagsubg2  17655  lagsubg  17656  orbsta2  17747  sylow1lem3  18015  sylow2alem2  18033  sylow2a  18034  sylow2blem2  18036  sylow2blem3  18037  sylow3lem3  18044  sylow3lem4  18045  vitalilem5  23381  vitali  23382  qerclwwlksnfi  26950
  Copyright terms: Public domain W3C validator