| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpdomlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for unxpdom 8167. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| unxpdomlem1.1 |
|
| unxpdomlem1.2 |
|
| unxpdomlem2.1 |
|
| unxpdomlem2.2 |
|
| unxpdomlem2.3 |
|
| Ref | Expression |
|---|---|
| unxpdomlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem2.3 |
. . 3
| |
| 2 | 1 | adantr 481 |
. 2
|
| 3 | elun1 3780 |
. . . . . . . . . 10
| |
| 4 | 3 | ad2antrl 764 |
. . . . . . . . 9
|
| 5 | unxpdomlem1.1 |
. . . . . . . . . 10
| |
| 6 | unxpdomlem1.2 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | unxpdomlem1 8164 |
. . . . . . . . 9
|
| 8 | 4, 7 | syl 17 |
. . . . . . . 8
|
| 9 | iftrue 4092 |
. . . . . . . . 9
| |
| 10 | 9 | ad2antrl 764 |
. . . . . . . 8
|
| 11 | 8, 10 | eqtrd 2656 |
. . . . . . 7
|
| 12 | unxpdomlem2.1 |
. . . . . . . . . 10
| |
| 13 | 12 | adantr 481 |
. . . . . . . . 9
|
| 14 | 5, 6 | unxpdomlem1 8164 |
. . . . . . . . 9
|
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
|
| 16 | iffalse 4095 |
. . . . . . . . 9
| |
| 17 | 16 | ad2antll 765 |
. . . . . . . 8
|
| 18 | 15, 17 | eqtrd 2656 |
. . . . . . 7
|
| 19 | 11, 18 | eqeq12d 2637 |
. . . . . 6
|
| 20 | 19 | biimpa 501 |
. . . . 5
|
| 21 | vex 3203 |
. . . . . 6
| |
| 22 | vex 3203 |
. . . . . . 7
| |
| 23 | vex 3203 |
. . . . . . 7
| |
| 24 | 22, 23 | ifex 4156 |
. . . . . 6
|
| 25 | 21, 24 | opth 4945 |
. . . . 5
|
| 26 | 20, 25 | sylib 208 |
. . . 4
|
| 27 | 26 | simprd 479 |
. . 3
|
| 28 | iftrue 4092 |
. . . . . . 7
| |
| 29 | 27 | eqeq1d 2624 |
. . . . . . 7
|
| 30 | 28, 29 | syl5ib 234 |
. . . . . 6
|
| 31 | iftrue 4092 |
. . . . . . 7
| |
| 32 | 26 | simpld 475 |
. . . . . . . 8
|
| 33 | 32 | eqeq1d 2624 |
. . . . . . 7
|
| 34 | 31, 33 | syl5ibr 236 |
. . . . . 6
|
| 35 | 30, 34 | syld 47 |
. . . . 5
|
| 36 | unxpdomlem2.2 |
. . . . . . 7
| |
| 37 | 36 | ad2antrr 762 |
. . . . . 6
|
| 38 | equequ1 1952 |
. . . . . . 7
| |
| 39 | 38 | notbid 308 |
. . . . . 6
|
| 40 | 37, 39 | syl5ibrcom 237 |
. . . . 5
|
| 41 | 35, 40 | pm2.65d 187 |
. . . 4
|
| 42 | 41 | iffalsed 4097 |
. . 3
|
| 43 | iffalse 4095 |
. . . . 5
| |
| 44 | 32 | eqeq1d 2624 |
. . . . 5
|
| 45 | 43, 44 | syl5ibr 236 |
. . . 4
|
| 46 | 41, 45 | mt3d 140 |
. . 3
|
| 47 | 27, 42, 46 | 3eqtr3d 2664 |
. 2
|
| 48 | 2, 47 | mtand 691 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: unxpdomlem3 8166 |
| Copyright terms: Public domain | W3C validator |