MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Visualization version   Unicode version

Theorem unxpdom 8167
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  u.  B
)  ~<_  ( A  X.  B ) )

Proof of Theorem unxpdom
Dummy variables  x  y  u  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 7962 . . . 4  |-  Rel  ~<
21brrelex2i 5159 . . 3  |-  ( 1o 
~<  A  ->  A  e. 
_V )
31brrelex2i 5159 . . 3  |-  ( 1o 
~<  B  ->  B  e. 
_V )
42, 3anim12i 590 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
5 breq2 4657 . . . . 5  |-  ( x  =  A  ->  ( 1o  ~<  x  <->  1o  ~<  A ) )
65anbi1d 741 . . . 4  |-  ( x  =  A  ->  (
( 1o  ~<  x  /\  1o  ~<  y )  <->  ( 1o  ~<  A  /\  1o  ~<  y ) ) )
7 uneq1 3760 . . . . 5  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
8 xpeq1 5128 . . . . 5  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
97, 8breq12d 4666 . . . 4  |-  ( x  =  A  ->  (
( x  u.  y
)  ~<_  ( x  X.  y )  <->  ( A  u.  y )  ~<_  ( A  X.  y ) ) )
106, 9imbi12d 334 . . 3  |-  ( x  =  A  ->  (
( ( 1o  ~<  x  /\  1o  ~<  y
)  ->  ( x  u.  y )  ~<_  ( x  X.  y ) )  <-> 
( ( 1o  ~<  A  /\  1o  ~<  y
)  ->  ( A  u.  y )  ~<_  ( A  X.  y ) ) ) )
11 breq2 4657 . . . . 5  |-  ( y  =  B  ->  ( 1o  ~<  y  <->  1o  ~<  B ) )
1211anbi2d 740 . . . 4  |-  ( y  =  B  ->  (
( 1o  ~<  A  /\  1o  ~<  y )  <->  ( 1o  ~<  A  /\  1o  ~<  B ) ) )
13 uneq2 3761 . . . . 5  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
14 xpeq2 5129 . . . . 5  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
1513, 14breq12d 4666 . . . 4  |-  ( y  =  B  ->  (
( A  u.  y
)  ~<_  ( A  X.  y )  <->  ( A  u.  B )  ~<_  ( A  X.  B ) ) )
1612, 15imbi12d 334 . . 3  |-  ( y  =  B  ->  (
( ( 1o  ~<  A  /\  1o  ~<  y
)  ->  ( A  u.  y )  ~<_  ( A  X.  y ) )  <-> 
( ( 1o  ~<  A  /\  1o  ~<  B )  ->  ( A  u.  B )  ~<_  ( A  X.  B ) ) ) )
17 eqid 2622 . . . 4  |-  ( z  e.  ( x  u.  y )  |->  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )
)  =  ( z  e.  ( x  u.  y )  |->  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )
)
18 eqid 2622 . . . 4  |-  if ( z  e.  x , 
<. z ,  if ( z  =  v ,  w ,  t )
>. ,  <. if ( z  =  w ,  u ,  v ) ,  z >. )  =  if ( z  e.  x ,  <. z ,  if ( z  =  v ,  w ,  t ) >. ,  <. if ( z  =  w ,  u ,  v ) ,  z >.
)
1917, 18unxpdomlem3 8166 . . 3  |-  ( ( 1o  ~<  x  /\  1o  ~<  y )  -> 
( x  u.  y
)  ~<_  ( x  X.  y ) )
2010, 16, 19vtocl2g 3270 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( 1o  ~<  A  /\  1o  ~<  B )  ->  ( A  u.  B )  ~<_  ( A  X.  B ) ) )
214, 20mpcom 38 1  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  u.  B
)  ~<_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   ifcif 4086   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   1oc1o 7553    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  unxpdom2  8168  sucxpdom  8169  cdaxpdom  9011
  Copyright terms: Public domain W3C validator