MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrunop Structured version   Visualization version   Unicode version

Theorem uspgrunop 26081
Description: The union of two simple pseudographs (with the same vertex set): If  <. V ,  E >. and  <. V ,  F >. are simple pseudographs, then  <. V ,  E  u.  F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept, maybe resulting incident two edges between two vertices). (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uspgrun.g  |-  ( ph  ->  G  e. USPGraph  )
uspgrun.h  |-  ( ph  ->  H  e. USPGraph  )
uspgrun.e  |-  E  =  (iEdg `  G )
uspgrun.f  |-  F  =  (iEdg `  H )
uspgrun.vg  |-  V  =  (Vtx `  G )
uspgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
uspgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
Assertion
Ref Expression
uspgrunop  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UPGraph  )

Proof of Theorem uspgrunop
StepHypRef Expression
1 uspgrun.g . . 3  |-  ( ph  ->  G  e. USPGraph  )
2 uspgrupgr 26071 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
31, 2syl 17 . 2  |-  ( ph  ->  G  e. UPGraph  )
4 uspgrun.h . . 3  |-  ( ph  ->  H  e. USPGraph  )
5 uspgrupgr 26071 . . 3  |-  ( H  e. USPGraph  ->  H  e. UPGraph  )
64, 5syl 17 . 2  |-  ( ph  ->  H  e. UPGraph  )
7 uspgrun.e . 2  |-  E  =  (iEdg `  G )
8 uspgrun.f . 2  |-  F  =  (iEdg `  H )
9 uspgrun.vg . 2  |-  V  =  (Vtx `  G )
10 uspgrun.vh . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
11 uspgrun.i . 2  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
123, 6, 7, 8, 9, 10, 11upgrunop 26014 1  |-  ( ph  -> 
<. V ,  ( E  u.  F ) >.  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573   (/)c0 3915   <.cop 4183   dom cdm 5114   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-upgr 25977  df-uspgr 26045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator