| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustn0 | Structured version Visualization version Unicode version | ||
| Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| ustn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3919 |
. . . . 5
| |
| 2 | 0ex 4790 |
. . . . . 6
| |
| 3 | eleq2 2690 |
. . . . . 6
| |
| 4 | 2, 3 | elab 3350 |
. . . . 5
|
| 5 | 1, 4 | mtbir 313 |
. . . 4
|
| 6 | vex 3203 |
. . . . . . 7
| |
| 7 | selpw 4165 |
. . . . . . . . . 10
| |
| 8 | 7 | abbii 2739 |
. . . . . . . . 9
|
| 9 | abid2 2745 |
. . . . . . . . . 10
| |
| 10 | 6, 6 | xpex 6962 |
. . . . . . . . . . . 12
|
| 11 | 10 | pwex 4848 |
. . . . . . . . . . 11
|
| 12 | 11 | pwex 4848 |
. . . . . . . . . 10
|
| 13 | 9, 12 | eqeltri 2697 |
. . . . . . . . 9
|
| 14 | 8, 13 | eqeltrri 2698 |
. . . . . . . 8
|
| 15 | simp1 1061 |
. . . . . . . . 9
| |
| 16 | 15 | ss2abi 3674 |
. . . . . . . 8
|
| 17 | 14, 16 | ssexi 4803 |
. . . . . . 7
|
| 18 | df-ust 22004 |
. . . . . . . 8
| |
| 19 | 18 | fvmpt2 6291 |
. . . . . . 7
|
| 20 | 6, 17, 19 | mp2an 708 |
. . . . . 6
|
| 21 | simp2 1062 |
. . . . . . 7
| |
| 22 | 21 | ss2abi 3674 |
. . . . . 6
|
| 23 | 20, 22 | eqsstri 3635 |
. . . . 5
|
| 24 | 23 | sseli 3599 |
. . . 4
|
| 25 | 5, 24 | mto 188 |
. . 3
|
| 26 | 25 | nex 1731 |
. 2
|
| 27 | 18 | funmpt2 5927 |
. . . 4
|
| 28 | elunirn 6509 |
. . . 4
| |
| 29 | 27, 28 | ax-mp 5 |
. . 3
|
| 30 | ustfn 22005 |
. . . . 5
| |
| 31 | fndm 5990 |
. . . . 5
| |
| 32 | 30, 31 | ax-mp 5 |
. . . 4
|
| 33 | 32 | rexeqi 3143 |
. . 3
|
| 34 | rexv 3220 |
. . 3
| |
| 35 | 29, 33, 34 | 3bitri 286 |
. 2
|
| 36 | 26, 35 | mtbir 313 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ust 22004 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |