MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxaval Structured version   Visualization version   Unicode version

Theorem uvtxaval 26287
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.)
Hypothesis
Ref Expression
isuvtxa.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
uvtxaval  |-  ( G  e.  W  ->  (UnivVtx `  G )  =  {
v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } )
Distinct variable groups:    n, G, v    n, V, v
Allowed substitution hints:    W( v, n)

Proof of Theorem uvtxaval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-uvtxa 26230 . . 3  |- UnivVtx  =  ( g  e.  _V  |->  { v  e.  (Vtx `  g )  |  A. n  e.  ( (Vtx `  g )  \  {
v } ) n  e.  ( g NeighbVtx  v
) } )
21a1i 11 . 2  |-  ( G  e.  W  -> UnivVtx  =  ( g  e.  _V  |->  { v  e.  (Vtx `  g )  |  A. n  e.  ( (Vtx `  g )  \  {
v } ) n  e.  ( g NeighbVtx  v
) } ) )
3 fveq2 6191 . . . . 5  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
4 isuvtxa.v . . . . 5  |-  V  =  (Vtx `  G )
53, 4syl6eqr 2674 . . . 4  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
65difeq1d 3727 . . . . 5  |-  ( g  =  G  ->  (
(Vtx `  g )  \  { v } )  =  ( V  \  { v } ) )
7 oveq1 6657 . . . . . 6  |-  ( g  =  G  ->  (
g NeighbVtx  v )  =  ( G NeighbVtx  v ) )
87eleq2d 2687 . . . . 5  |-  ( g  =  G  ->  (
n  e.  ( g NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  v ) ) )
96, 8raleqbidv 3152 . . . 4  |-  ( g  =  G  ->  ( A. n  e.  (
(Vtx `  g )  \  { v } ) n  e.  ( g NeighbVtx  v )  <->  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) )
105, 9rabeqbidv 3195 . . 3  |-  ( g  =  G  ->  { v  e.  (Vtx `  g
)  |  A. n  e.  ( (Vtx `  g
)  \  { v } ) n  e.  ( g NeighbVtx  v ) }  =  { v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } )
1110adantl 482 . 2  |-  ( ( G  e.  W  /\  g  =  G )  ->  { v  e.  (Vtx
`  g )  | 
A. n  e.  ( (Vtx `  g )  \  { v } ) n  e.  ( g NeighbVtx  v ) }  =  { v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } )
12 elex 3212 . 2  |-  ( G  e.  W  ->  G  e.  _V )
13 fvex 6201 . . . . 5  |-  (Vtx `  G )  e.  _V
144, 13eqeltri 2697 . . . 4  |-  V  e. 
_V
1514rabex 4813 . . 3  |-  { v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) }  e.  _V
1615a1i 11 . 2  |-  ( G  e.  W  ->  { v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) }  e.  _V )
172, 11, 12, 16fvmptd 6288 1  |-  ( G  e.  W  ->  (UnivVtx `  G )  =  {
v  e.  V  |  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874   NeighbVtx cnbgr 26224  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-uvtxa 26230
This theorem is referenced by:  uvtxael  26288  uvtxaisvtx  26289  uvtxa0  26294  isuvtxa  26295  uvtxa01vtx0  26297  uvtxusgr  26303
  Copyright terms: Public domain W3C validator