Proof of Theorem nb3gr2nb
Step | Hyp | Ref
| Expression |
1 | | prcom 4267 |
. . . . . . . . 9
    
  |
2 | 1 | eleq1i 2692 |
. . . . . . . 8
    Edg     Edg    |
3 | 2 | biimpi 206 |
. . . . . . 7
    Edg    
Edg    |
4 | 3 | adantl 482 |
. . . . . 6
    
Edg 
   Edg     
Edg    |
5 | | prcom 4267 |
. . . . . . . . 9
    
  |
6 | 5 | eleq1i 2692 |
. . . . . . . 8
    Edg     Edg    |
7 | 6 | biimpi 206 |
. . . . . . 7
    Edg    
Edg    |
8 | 7 | adantl 482 |
. . . . . 6
    
Edg 
   Edg     
Edg    |
9 | 4, 8 | anim12i 590 |
. . . . 5
     
Edg   
 Edg  
  
 Edg    
Edg       
Edg   
 Edg     |
10 | 9 | a1i 11 |
. . . 4
  

 Vtx   
 
USGraph        Edg     Edg  
  
 Edg    
Edg       
Edg   
 Edg      |
11 | | eqid 2622 |
. . . . . 6
Vtx  Vtx   |
12 | | eqid 2622 |
. . . . . 6
Edg  Edg   |
13 | | simprr 796 |
. . . . . 6
  

 Vtx   
 
USGraph  USGraph  |
14 | | simprl 794 |
. . . . . 6
  

 Vtx   
 
USGraph  Vtx   
    |
15 | | simpl 473 |
. . . . . 6
  

 Vtx   
 
USGraph  
   |
16 | 11, 12, 13, 14, 15 | nb3grprlem1 26282 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
17 | | 3ancoma 1045 |
. . . . . . 7
 
 
   |
18 | 17 | biimpi 206 |
. . . . . 6
 
 
   |
19 | | tpcoma 4285 |
. . . . . . . . 9
         |
20 | 19 | eqeq2i 2634 |
. . . . . . . 8
 Vtx     
Vtx        |
21 | 20 | biimpi 206 |
. . . . . . 7
 Vtx      Vtx   
    |
22 | 21 | anim1i 592 |
. . . . . 6
  Vtx      USGraph
 Vtx   
 
USGraph   |
23 | | simprr 796 |
. . . . . . 7
  

 Vtx   
 
USGraph  USGraph  |
24 | | simprl 794 |
. . . . . . 7
  

 Vtx   
 
USGraph  Vtx   
    |
25 | | simpl 473 |
. . . . . . 7
  

 Vtx   
 
USGraph  
   |
26 | 11, 12, 23, 24, 25 | nb3grprlem1 26282 |
. . . . . 6
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
27 | 18, 22, 26 | syl2an 494 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
28 | 16, 27 | anbi12d 747 |
. . . 4
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
       Edg    
Edg       Edg    
Edg       |
29 | | 3anrot 1043 |
. . . . . 6
 
 
   |
30 | 29 | biimpri 218 |
. . . . 5
 
 
   |
31 | | tprot 4284 |
. . . . . . . . 9
         |
32 | 31 | eqcomi 2631 |
. . . . . . . 8
         |
33 | 32 | eqeq2i 2634 |
. . . . . . 7
 Vtx     
Vtx        |
34 | 33 | anbi1i 731 |
. . . . . 6
  Vtx      USGraph  Vtx   
 
USGraph   |
35 | 34 | biimpi 206 |
. . . . 5
  Vtx      USGraph
 Vtx   
 
USGraph   |
36 | | simprr 796 |
. . . . . 6
  

 Vtx   
 
USGraph  USGraph  |
37 | | simprl 794 |
. . . . . 6
  

 Vtx   
 
USGraph  Vtx   
    |
38 | | simpl 473 |
. . . . . 6
  

 Vtx   
 
USGraph  
   |
39 | 11, 12, 36, 37, 38 | nb3grprlem1 26282 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
40 | 30, 35, 39 | syl2an 494 |
. . . 4
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
41 | 10, 28, 40 | 3imtr4d 283 |
. . 3
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
 
 NeighbVtx        |
42 | 41 | pm4.71d 666 |
. 2
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
     NeighbVtx   
  NeighbVtx
      NeighbVtx   
     |
43 | | df-3an 1039 |
. 2
   NeighbVtx
     NeighbVtx    
 NeighbVtx   
     NeighbVtx   
  NeighbVtx
      NeighbVtx   
    |
44 | 42, 43 | syl6bbr 278 |
1
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
    NeighbVtx   
  NeighbVtx
     NeighbVtx         |