Proof of Theorem nb3gr2nb
| Step | Hyp | Ref
| Expression |
| 1 | | prcom 4267 |
. . . . . . . . 9
    
  |
| 2 | 1 | eleq1i 2692 |
. . . . . . . 8
    Edg     Edg    |
| 3 | 2 | biimpi 206 |
. . . . . . 7
    Edg    
Edg    |
| 4 | 3 | adantl 482 |
. . . . . 6
    
Edg 
   Edg     
Edg    |
| 5 | | prcom 4267 |
. . . . . . . . 9
    
  |
| 6 | 5 | eleq1i 2692 |
. . . . . . . 8
    Edg     Edg    |
| 7 | 6 | biimpi 206 |
. . . . . . 7
    Edg    
Edg    |
| 8 | 7 | adantl 482 |
. . . . . 6
    
Edg 
   Edg     
Edg    |
| 9 | 4, 8 | anim12i 590 |
. . . . 5
     
Edg   
 Edg  
  
 Edg    
Edg       
Edg   
 Edg     |
| 10 | 9 | a1i 11 |
. . . 4
  

 Vtx   
 
USGraph        Edg     Edg  
  
 Edg    
Edg       
Edg   
 Edg      |
| 11 | | eqid 2622 |
. . . . . 6
Vtx  Vtx   |
| 12 | | eqid 2622 |
. . . . . 6
Edg  Edg   |
| 13 | | simprr 796 |
. . . . . 6
  

 Vtx   
 
USGraph  USGraph  |
| 14 | | simprl 794 |
. . . . . 6
  

 Vtx   
 
USGraph  Vtx   
    |
| 15 | | simpl 473 |
. . . . . 6
  

 Vtx   
 
USGraph  
   |
| 16 | 11, 12, 13, 14, 15 | nb3grprlem1 26282 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
| 17 | | 3ancoma 1045 |
. . . . . . 7
 
 
   |
| 18 | 17 | biimpi 206 |
. . . . . 6
 
 
   |
| 19 | | tpcoma 4285 |
. . . . . . . . 9
         |
| 20 | 19 | eqeq2i 2634 |
. . . . . . . 8
 Vtx     
Vtx        |
| 21 | 20 | biimpi 206 |
. . . . . . 7
 Vtx      Vtx   
    |
| 22 | 21 | anim1i 592 |
. . . . . 6
  Vtx      USGraph
 Vtx   
 
USGraph   |
| 23 | | simprr 796 |
. . . . . . 7
  

 Vtx   
 
USGraph  USGraph  |
| 24 | | simprl 794 |
. . . . . . 7
  

 Vtx   
 
USGraph  Vtx   
    |
| 25 | | simpl 473 |
. . . . . . 7
  

 Vtx   
 
USGraph  
   |
| 26 | 11, 12, 23, 24, 25 | nb3grprlem1 26282 |
. . . . . 6
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
| 27 | 18, 22, 26 | syl2an 494 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
| 28 | 16, 27 | anbi12d 747 |
. . . 4
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
       Edg    
Edg       Edg    
Edg       |
| 29 | | 3anrot 1043 |
. . . . . 6
 
 
   |
| 30 | 29 | biimpri 218 |
. . . . 5
 
 
   |
| 31 | | tprot 4284 |
. . . . . . . . 9
         |
| 32 | 31 | eqcomi 2631 |
. . . . . . . 8
         |
| 33 | 32 | eqeq2i 2634 |
. . . . . . 7
 Vtx     
Vtx        |
| 34 | 33 | anbi1i 731 |
. . . . . 6
  Vtx      USGraph  Vtx   
 
USGraph   |
| 35 | 34 | biimpi 206 |
. . . . 5
  Vtx      USGraph
 Vtx   
 
USGraph   |
| 36 | | simprr 796 |
. . . . . 6
  

 Vtx   
 
USGraph  USGraph  |
| 37 | | simprl 794 |
. . . . . 6
  

 Vtx   
 
USGraph  Vtx   
    |
| 38 | | simpl 473 |
. . . . . 6
  

 Vtx   
 
USGraph  
   |
| 39 | 11, 12, 36, 37, 38 | nb3grprlem1 26282 |
. . . . 5
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
| 40 | 30, 35, 39 | syl2an 494 |
. . . 4
  

 Vtx   
 
USGraph   
NeighbVtx        
Edg   
 Edg      |
| 41 | 10, 28, 40 | 3imtr4d 283 |
. . 3
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
 
 NeighbVtx        |
| 42 | 41 | pm4.71d 666 |
. 2
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
     NeighbVtx   
  NeighbVtx
      NeighbVtx   
     |
| 43 | | df-3an 1039 |
. 2
   NeighbVtx
     NeighbVtx    
 NeighbVtx   
     NeighbVtx   
  NeighbVtx
      NeighbVtx   
    |
| 44 | 42, 43 | syl6bbr 278 |
1
  

 Vtx   
 
USGraph     NeighbVtx    
 NeighbVtx   
    NeighbVtx   
  NeighbVtx
     NeighbVtx         |