MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdeqd Structured version   Visualization version   Unicode version

Theorem vtxdeqd 26373
Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
vtxdeqd.g  |-  ( ph  ->  G  e.  X )
vtxdeqd.h  |-  ( ph  ->  H  e.  Y )
vtxdeqd.v  |-  ( ph  ->  (Vtx `  H )  =  (Vtx `  G )
)
vtxdeqd.i  |-  ( ph  ->  (iEdg `  H )  =  (iEdg `  G )
)
Assertion
Ref Expression
vtxdeqd  |-  ( ph  ->  (VtxDeg `  H )  =  (VtxDeg `  G )
)

Proof of Theorem vtxdeqd
Dummy variables  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdeqd.v . . 3  |-  ( ph  ->  (Vtx `  H )  =  (Vtx `  G )
)
2 vtxdeqd.i . . . . . . 7  |-  ( ph  ->  (iEdg `  H )  =  (iEdg `  G )
)
32dmeqd 5326 . . . . . 6  |-  ( ph  ->  dom  (iEdg `  H
)  =  dom  (iEdg `  G ) )
42fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( (iEdg `  H
) `  x )  =  ( (iEdg `  G ) `  x
) )
54eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( u  e.  ( (iEdg `  H ) `  x )  <->  u  e.  ( (iEdg `  G ) `  x ) ) )
63, 5rabeqbidv 3195 . . . . 5  |-  ( ph  ->  { x  e.  dom  (iEdg `  H )  |  u  e.  ( (iEdg `  H ) `  x
) }  =  {
x  e.  dom  (iEdg `  G )  |  u  e.  ( (iEdg `  G ) `  x
) } )
76fveq2d 6195 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  H )  |  u  e.  ( (iEdg `  H ) `  x
) } )  =  ( # `  {
x  e.  dom  (iEdg `  G )  |  u  e.  ( (iEdg `  G ) `  x
) } ) )
84eqeq1d 2624 . . . . . 6  |-  ( ph  ->  ( ( (iEdg `  H ) `  x
)  =  { u } 
<->  ( (iEdg `  G
) `  x )  =  { u } ) )
93, 8rabeqbidv 3195 . . . . 5  |-  ( ph  ->  { x  e.  dom  (iEdg `  H )  |  ( (iEdg `  H
) `  x )  =  { u } }  =  { x  e.  dom  (iEdg `  G )  |  ( (iEdg `  G
) `  x )  =  { u } }
)
109fveq2d 6195 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  dom  (iEdg `  H )  |  ( (iEdg `  H ) `  x )  =  {
u } } )  =  ( # `  {
x  e.  dom  (iEdg `  G )  |  ( (iEdg `  G ) `  x )  =  {
u } } ) )
117, 10oveq12d 6668 . . 3  |-  ( ph  ->  ( ( # `  {
x  e.  dom  (iEdg `  H )  |  u  e.  ( (iEdg `  H ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  H )  |  ( (iEdg `  H ) `  x )  =  {
u } } ) )  =  ( (
# `  { x  e.  dom  (iEdg `  G
)  |  u  e.  ( (iEdg `  G
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  G
)  |  ( (iEdg `  G ) `  x
)  =  { u } } ) ) )
121, 11mpteq12dv 4733 . 2  |-  ( ph  ->  ( u  e.  (Vtx
`  H )  |->  ( ( # `  {
x  e.  dom  (iEdg `  H )  |  u  e.  ( (iEdg `  H ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  H )  |  ( (iEdg `  H ) `  x )  =  {
u } } ) ) )  =  ( u  e.  (Vtx `  G )  |->  ( (
# `  { x  e.  dom  (iEdg `  G
)  |  u  e.  ( (iEdg `  G
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  G
)  |  ( (iEdg `  G ) `  x
)  =  { u } } ) ) ) )
13 vtxdeqd.h . . 3  |-  ( ph  ->  H  e.  Y )
14 eqid 2622 . . . 4  |-  (Vtx `  H )  =  (Vtx
`  H )
15 eqid 2622 . . . 4  |-  (iEdg `  H )  =  (iEdg `  H )
16 eqid 2622 . . . 4  |-  dom  (iEdg `  H )  =  dom  (iEdg `  H )
1714, 15, 16vtxdgfval 26363 . . 3  |-  ( H  e.  Y  ->  (VtxDeg `  H )  =  ( u  e.  (Vtx `  H )  |->  ( (
# `  { x  e.  dom  (iEdg `  H
)  |  u  e.  ( (iEdg `  H
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  H
)  |  ( (iEdg `  H ) `  x
)  =  { u } } ) ) ) )
1813, 17syl 17 . 2  |-  ( ph  ->  (VtxDeg `  H )  =  ( u  e.  (Vtx `  H )  |->  ( ( # `  {
x  e.  dom  (iEdg `  H )  |  u  e.  ( (iEdg `  H ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  H )  |  ( (iEdg `  H ) `  x )  =  {
u } } ) ) ) )
19 vtxdeqd.g . . 3  |-  ( ph  ->  G  e.  X )
20 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
21 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
22 eqid 2622 . . . 4  |-  dom  (iEdg `  G )  =  dom  (iEdg `  G )
2320, 21, 22vtxdgfval 26363 . . 3  |-  ( G  e.  X  ->  (VtxDeg `  G )  =  ( u  e.  (Vtx `  G )  |->  ( (
# `  { x  e.  dom  (iEdg `  G
)  |  u  e.  ( (iEdg `  G
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  G
)  |  ( (iEdg `  G ) `  x
)  =  { u } } ) ) ) )
2419, 23syl 17 . 2  |-  ( ph  ->  (VtxDeg `  G )  =  ( u  e.  (Vtx `  G )  |->  ( ( # `  {
x  e.  dom  (iEdg `  G )  |  u  e.  ( (iEdg `  G ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  G )  |  ( (iEdg `  G ) `  x )  =  {
u } } ) ) ) )
2512, 18, 243eqtr4d 2666 1  |-  ( ph  ->  (VtxDeg `  H )  =  (VtxDeg `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   {csn 4177    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   +ecxad 11944   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-vtxdg 26362
This theorem is referenced by:  eupthvdres  27095
  Copyright terms: Public domain W3C validator