MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem1 Structured version   Visualization version   Unicode version

Theorem wfrlem1 7414
Description: Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions  B. This lemma just changes bound variables for later use. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem1.1  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
Assertion
Ref Expression
wfrlem1  |-  B  =  { g  |  E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) }
Distinct variable groups:    A, f,
g, w, x, y, z    f, F, g, w, x, y, z    R, f, g, w, x, y, z
Allowed substitution hints:    B( x, y, z, w, f, g)

Proof of Theorem wfrlem1
StepHypRef Expression
1 wfrlem1.1 . 2  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
2 fneq1 5979 . . . . . 6  |-  ( f  =  g  ->  (
f  Fn  x  <->  g  Fn  x ) )
3 fveq1 6190 . . . . . . . 8  |-  ( f  =  g  ->  (
f `  y )  =  ( g `  y ) )
4 reseq1 5390 . . . . . . . . 9  |-  ( f  =  g  ->  (
f  |`  Pred ( R ,  A ,  y )
)  =  ( g  |`  Pred ( R ,  A ,  y )
) )
54fveq2d 6195 . . . . . . . 8  |-  ( f  =  g  ->  ( F `  ( f  |` 
Pred ( R ,  A ,  y )
) )  =  ( F `  ( g  |`  Pred ( R ,  A ,  y )
) ) )
63, 5eqeq12d 2637 . . . . . . 7  |-  ( f  =  g  ->  (
( f `  y
)  =  ( F `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  <->  ( g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A ,  y )
) ) ) )
76ralbidv 2986 . . . . . 6  |-  ( f  =  g  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  <->  A. y  e.  x  ( g `  y
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  y ) ) ) ) )
82, 73anbi13d 1401 . . . . 5  |-  ( f  =  g  ->  (
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( g  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A ,  y )
) ) ) ) )
98exbidv 1850 . . . 4  |-  ( f  =  g  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  <->  E. x
( g  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
10 fneq2 5980 . . . . . 6  |-  ( x  =  z  ->  (
g  Fn  x  <->  g  Fn  z ) )
11 sseq1 3626 . . . . . . 7  |-  ( x  =  z  ->  (
x  C_  A  <->  z  C_  A ) )
12 sseq2 3627 . . . . . . . . 9  |-  ( x  =  z  ->  ( Pred ( R ,  A ,  y )  C_  x 
<-> 
Pred ( R ,  A ,  y )  C_  z ) )
1312raleqbi1dv 3146 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  x  Pred ( R ,  A ,  y )  C_  x 
<-> 
A. y  e.  z 
Pred ( R ,  A ,  y )  C_  z ) )
14 predeq3 5684 . . . . . . . . . 10  |-  ( y  =  w  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A ,  w ) )
1514sseq1d 3632 . . . . . . . . 9  |-  ( y  =  w  ->  ( Pred ( R ,  A ,  y )  C_  z 
<-> 
Pred ( R ,  A ,  w )  C_  z ) )
1615cbvralv 3171 . . . . . . . 8  |-  ( A. y  e.  z  Pred ( R ,  A , 
y )  C_  z  <->  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)
1713, 16syl6bb 276 . . . . . . 7  |-  ( x  =  z  ->  ( A. y  e.  x  Pred ( R ,  A ,  y )  C_  x 
<-> 
A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z ) )
1811, 17anbi12d 747 . . . . . 6  |-  ( x  =  z  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  <->  ( z  C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w
)  C_  z )
) )
19 raleq 3138 . . . . . . 7  |-  ( x  =  z  ->  ( A. y  e.  x  ( g `  y
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  y ) ) )  <->  A. y  e.  z  ( g `  y
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  y ) ) ) ) )
20 fveq2 6191 . . . . . . . . 9  |-  ( y  =  w  ->  (
g `  y )  =  ( g `  w ) )
2114reseq2d 5396 . . . . . . . . . 10  |-  ( y  =  w  ->  (
g  |`  Pred ( R ,  A ,  y )
)  =  ( g  |`  Pred ( R ,  A ,  w )
) )
2221fveq2d 6195 . . . . . . . . 9  |-  ( y  =  w  ->  ( F `  ( g  |` 
Pred ( R ,  A ,  y )
) )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) )
2320, 22eqeq12d 2637 . . . . . . . 8  |-  ( y  =  w  ->  (
( g `  y
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  y ) ) )  <->  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) )
2423cbvralv 3171 . . . . . . 7  |-  ( A. y  e.  z  (
g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A , 
y ) ) )  <->  A. w  e.  z 
( g `  w
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  w ) ) ) )
2519, 24syl6bb 276 . . . . . 6  |-  ( x  =  z  ->  ( A. y  e.  x  ( g `  y
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  y ) ) )  <->  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  w ) ) ) ) )
2610, 18, 253anbi123d 1399 . . . . 5  |-  ( x  =  z  ->  (
( g  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) ) )
2726cbvexv 2275 . . . 4  |-  ( E. x ( g  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( g `  y )  =  ( F `  ( g  |`  Pred ( R ,  A ,  y )
) ) )  <->  E. z
( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  (
g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w ) ) ) ) )
289, 27syl6bb 276 . . 3  |-  ( f  =  g  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  <->  E. z
( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  (
g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w ) ) ) ) ) )
2928cbvabv 2747 . 2  |-  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  { g  |  E. z ( g  Fn  z  /\  (
z  C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) }
301, 29eqtri 2644 1  |-  B  =  { g  |  E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   {cab 2608   A.wral 2912    C_ wss 3574    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wfrlem2  7415  wfrlem3  7416  wfrlem3a  7417  wfrlem4  7418  wfrdmcl  7423
  Copyright terms: Public domain W3C validator