MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem3a Structured version   Visualization version   Unicode version

Theorem wfrlem3a 7417
Description: Lemma for well-founded recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020.)
Hypotheses
Ref Expression
wfrlem1.1  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
wfrlem3a.2  |-  G  e. 
_V
Assertion
Ref Expression
wfrlem3a  |-  ( G  e.  B  <->  E. z
( G  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  Pred ( R ,  A ,  w ) ) ) ) )
Distinct variable groups:    A, f, w, x, y, z    f, F, w, x, y, z    R, f, w, x, y, z    f, G, x, y, z, w
Allowed substitution hints:    B( x, y, z, w, f)

Proof of Theorem wfrlem3a
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 wfrlem3a.2 . 2  |-  G  e. 
_V
2 fneq1 5979 . . . 4  |-  ( g  =  G  ->  (
g  Fn  z  <->  G  Fn  z ) )
3 fveq1 6190 . . . . . 6  |-  ( g  =  G  ->  (
g `  w )  =  ( G `  w ) )
4 reseq1 5390 . . . . . . 7  |-  ( g  =  G  ->  (
g  |`  Pred ( R ,  A ,  w )
)  =  ( G  |`  Pred ( R ,  A ,  w )
) )
54fveq2d 6195 . . . . . 6  |-  ( g  =  G  ->  ( F `  ( g  |` 
Pred ( R ,  A ,  w )
) )  =  ( F `  ( G  |`  Pred ( R ,  A ,  w )
) ) )
63, 5eqeq12d 2637 . . . . 5  |-  ( g  =  G  ->  (
( g `  w
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  w ) ) )  <-> 
( G `  w
)  =  ( F `
 ( G  |`  Pred ( R ,  A ,  w ) ) ) ) )
76ralbidv 2986 . . . 4  |-  ( g  =  G  ->  ( A. w  e.  z 
( g `  w
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  w ) ) )  <->  A. w  e.  z 
( G `  w
)  =  ( F `
 ( G  |`  Pred ( R ,  A ,  w ) ) ) ) )
82, 73anbi13d 1401 . . 3  |-  ( g  =  G  ->  (
( g  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  (
g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w ) ) ) )  <->  ( G  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  Pred ( R ,  A ,  w ) ) ) ) ) )
98exbidv 1850 . 2  |-  ( g  =  G  ->  ( E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) )  <->  E. z
( G  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  Pred ( R ,  A ,  w ) ) ) ) ) )
10 wfrlem1.1 . . 3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
1110wfrlem1 7414 . 2  |-  B  =  { g  |  E. z ( g  Fn  z  /\  ( z 
C_  A  /\  A. w  e.  z  Pred ( R ,  A ,  w )  C_  z
)  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  Pred ( R ,  A ,  w )
) ) ) }
121, 9, 11elab2 3354 1  |-  ( G  e.  B  <->  E. z
( G  Fn  z  /\  ( z  C_  A  /\  A. w  e.  z 
Pred ( R ,  A ,  w )  C_  z )  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  Pred ( R ,  A ,  w ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    C_ wss 3574    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wfrlem17  7431
  Copyright terms: Public domain W3C validator