MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem4 Structured version   Visualization version   Unicode version

Theorem wfrlem4 7418
Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another one. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem4.1  |-  R  We  A
wfrlem4.2  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
Assertion
Ref Expression
wfrlem4  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( g  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( g  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( F `  (
( g  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
Distinct variable groups:    A, a,
f, g, h, x, y    B, a    F, a, f, g, h, x, y    R, a, f, g, h, x, y
Allowed substitution hints:    B( x, y, f, g, h)

Proof of Theorem wfrlem4
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem4.2 . . . . . 6  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
21wfrlem2 7415 . . . . 5  |-  ( g  e.  B  ->  Fun  g )
3 funfn 5918 . . . . 5  |-  ( Fun  g  <->  g  Fn  dom  g )
42, 3sylib 208 . . . 4  |-  ( g  e.  B  ->  g  Fn  dom  g )
5 fnresin1 6005 . . . 4  |-  ( g  Fn  dom  g  -> 
( g  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
) )
64, 5syl 17 . . 3  |-  ( g  e.  B  ->  (
g  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i  dom  h ) )
76adantr 481 . 2  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  Fn  ( dom  g  i^i  dom  h
) )
8 inss1 3833 . . . . . . . 8  |-  ( dom  g  i^i  dom  h
)  C_  dom  g
98sseli 3599 . . . . . . 7  |-  ( a  e.  ( dom  g  i^i  dom  h )  -> 
a  e.  dom  g
)
101wfrlem1 7414 . . . . . . . . 9  |-  B  =  { g  |  E. b ( g  Fn  b  /\  ( b 
C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) ) }
1110abeq2i 2735 . . . . . . . 8  |-  ( g  e.  B  <->  E. b
( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) ) )
12 fndm 5990 . . . . . . . . . . . . 13  |-  ( g  Fn  b  ->  dom  g  =  b )
1312raleqdv 3144 . . . . . . . . . . . 12  |-  ( g  Fn  b  ->  ( A. a  e.  dom  g ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) )  <->  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) ) )
1413biimpar 502 . . . . . . . . . . 11  |-  ( ( g  Fn  b  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  ->  A. a  e.  dom  g ( g `
 a )  =  ( F `  (
g  |`  Pred ( R ,  A ,  a )
) ) )
15 rsp 2929 . . . . . . . . . . 11  |-  ( A. a  e.  dom  g ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  ->  ( a  e. 
dom  g  ->  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) ) )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ( g  Fn  b  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  ->  ( a  e.  dom  g  ->  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) ) )
17163adant2 1080 . . . . . . . . 9  |-  ( ( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  ->  ( a  e.  dom  g  ->  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) ) )
1817exlimiv 1858 . . . . . . . 8  |-  ( E. b ( g  Fn  b  /\  ( b 
C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) )  -> 
( a  e.  dom  g  ->  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) ) )
1911, 18sylbi 207 . . . . . . 7  |-  ( g  e.  B  ->  (
a  e.  dom  g  ->  ( g `  a
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  a ) ) ) ) )
209, 19syl5 34 . . . . . 6  |-  ( g  e.  B  ->  (
a  e.  ( dom  g  i^i  dom  h
)  ->  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) ) )
2120imp 445 . . . . 5  |-  ( ( g  e.  B  /\  a  e.  ( dom  g  i^i  dom  h )
)  ->  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) )
2221adantlr 751 . . . 4  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( g `  a
)  =  ( F `
 ( g  |`  Pred ( R ,  A ,  a ) ) ) )
23 fvres 6207 . . . . 5  |-  ( a  e.  ( dom  g  i^i  dom  h )  -> 
( ( g  |`  ( dom  g  i^i  dom  h ) ) `  a )  =  ( g `  a ) )
2423adantl 482 . . . 4  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( ( g  |`  ( dom  g  i^i  dom  h ) ) `  a )  =  ( g `  a ) )
25 resres 5409 . . . . . 6  |-  ( ( g  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) )  =  ( g  |`  ( ( dom  g  i^i  dom  h
)  i^i  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) )
26 predss 5687 . . . . . . . . 9  |-  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  C_  ( dom  g  i^i  dom  h )
27 sseqin2 3817 . . . . . . . . 9  |-  ( Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  C_  ( dom  g  i^i  dom  h )  <->  ( ( dom  g  i^i 
dom  h )  i^i 
Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) )  =  Pred ( R ,  ( dom  g  i^i  dom  h
) ,  a ) )
2826, 27mpbi 220 . . . . . . . 8  |-  ( ( dom  g  i^i  dom  h )  i^i  Pred ( R ,  ( dom  g  i^i  dom  h
) ,  a ) )  =  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )
291wfrlem1 7414 . . . . . . . . . . . 12  |-  B  =  { h  |  E. c ( h  Fn  c  /\  ( c 
C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
)  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) }
3029abeq2i 2735 . . . . . . . . . . 11  |-  ( h  e.  B  <->  E. c
( h  Fn  c  /\  ( c  C_  A  /\  A. a  e.  c 
Pred ( R ,  A ,  a )  C_  c )  /\  A. a  e.  c  (
h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A , 
a ) ) ) ) )
31 3an6 1409 . . . . . . . . . . . . . 14  |-  ( ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  /\  ( A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  <-> 
( ( g  Fn  b  /\  ( b 
C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) )  /\  ( h  Fn  c  /\  ( c  C_  A  /\  A. a  e.  c 
Pred ( R ,  A ,  a )  C_  c )  /\  A. a  e.  c  (
h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A , 
a ) ) ) ) ) )
32312exbii 1775 . . . . . . . . . . . . 13  |-  ( E. b E. c ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  /\  ( A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  <->  E. b E. c ( ( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  /\  ( h  Fn  c  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
)  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) ) )
33 eeanv 2182 . . . . . . . . . . . . 13  |-  ( E. b E. c ( ( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  /\  ( h  Fn  c  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
)  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  <-> 
( E. b ( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  /\  E. c
( h  Fn  c  /\  ( c  C_  A  /\  A. a  e.  c 
Pred ( R ,  A ,  a )  C_  c )  /\  A. a  e.  c  (
h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A , 
a ) ) ) ) ) )
3432, 33bitri 264 . . . . . . . . . . . 12  |-  ( E. b E. c ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  /\  ( A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  <-> 
( E. b ( g  Fn  b  /\  ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) ) )  /\  E. c
( h  Fn  c  /\  ( c  C_  A  /\  A. a  e.  c 
Pred ( R ,  A ,  a )  C_  c )  /\  A. a  e.  c  (
h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A , 
a ) ) ) ) ) )
35 ssinss1 3841 . . . . . . . . . . . . . . . . . 18  |-  ( b 
C_  A  ->  (
b  i^i  c )  C_  A )
3635ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
) )  ->  (
b  i^i  c )  C_  A )
37 nfra1 2941 . . . . . . . . . . . . . . . . . . . 20  |-  F/ a A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b
38 nfra1 2941 . . . . . . . . . . . . . . . . . . . 20  |-  F/ a A. a  e.  c 
Pred ( R ,  A ,  a )  C_  c
3937, 38nfan 1828 . . . . . . . . . . . . . . . . . . 19  |-  F/ a ( A. a  e.  b  Pred ( R ,  A ,  a )  C_  b  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
40 inss1 3833 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  i^i  c )  C_  b
4140sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  ( b  i^i  c )  ->  a  e.  b )
42 rsp 2929 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. a  e.  b  Pred ( R ,  A , 
a )  C_  b  ->  ( a  e.  b  ->  Pred ( R ,  A ,  a )  C_  b ) )
4341, 42syl5com 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ( b  i^i  c )  ->  ( A. a  e.  b  Pred ( R ,  A ,  a )  C_  b  ->  Pred ( R ,  A ,  a )  C_  b ) )
44 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  i^i  c )  C_  c
4544sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  ( b  i^i  c )  ->  a  e.  c )
46 rsp 2929 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. a  e.  c  Pred ( R ,  A , 
a )  C_  c  ->  ( a  e.  c  ->  Pred ( R ,  A ,  a )  C_  c ) )
4745, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ( b  i^i  c )  ->  ( A. a  e.  c  Pred ( R ,  A ,  a )  C_  c  ->  Pred ( R ,  A ,  a )  C_  c ) )
4843, 47anim12d 586 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  ( b  i^i  c )  ->  (
( A. a  e.  b  Pred ( R ,  A ,  a )  C_  b  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )  ->  ( Pred ( R ,  A ,  a )  C_  b  /\  Pred ( R ,  A ,  a )  C_  c ) ) )
49 ssin 3835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Pred ( R ,  A ,  a )  C_  b  /\  Pred ( R ,  A , 
a )  C_  c
)  <->  Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) )
5049biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
Pred ( R ,  A ,  a )  C_  b  /\  Pred ( R ,  A , 
a )  C_  c
)  ->  Pred ( R ,  A ,  a )  C_  ( b  i^i  c ) )
5148, 50syl6com 37 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )  ->  ( a  e.  ( b  i^i  c )  ->  Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) )
5239, 51ralrimi 2957 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )  ->  A. a  e.  ( b  i^i  c )
Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) )
5352ad2ant2l 782 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
) )  ->  A. a  e.  ( b  i^i  c
) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) )
5436, 53jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
) )  ->  (
( b  i^i  c
)  C_  A  /\  A. a  e.  ( b  i^i  c ) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) )
55 fndm 5990 . . . . . . . . . . . . . . . . . 18  |-  ( h  Fn  c  ->  dom  h  =  c )
5612, 55ineqan12d 3816 . . . . . . . . . . . . . . . . 17  |-  ( ( g  Fn  b  /\  h  Fn  c )  ->  ( dom  g  i^i 
dom  h )  =  ( b  i^i  c
) )
57 sseq1 3626 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  g  i^i  dom  h )  =  ( b  i^i  c )  ->  ( ( dom  g  i^i  dom  h
)  C_  A  <->  ( b  i^i  c )  C_  A
) )
58 sseq2 3627 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( dom  g  i^i  dom  h )  =  ( b  i^i  c )  ->  ( Pred ( R ,  A , 
a )  C_  ( dom  g  i^i  dom  h
)  <->  Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) )
5958raleqbi1dv 3146 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  g  i^i  dom  h )  =  ( b  i^i  c )  ->  ( A. a  e.  ( dom  g  i^i 
dom  h ) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i  dom  h )  <->  A. a  e.  ( b  i^i  c
) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) )
6057, 59anbi12d 747 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  g  i^i  dom  h )  =  ( b  i^i  c )  ->  ( ( ( dom  g  i^i  dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h ) Pred ( R ,  A , 
a )  C_  ( dom  g  i^i  dom  h
) )  <->  ( (
b  i^i  c )  C_  A  /\  A. a  e.  ( b  i^i  c
) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) ) )
6160imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  g  i^i  dom  h )  =  ( b  i^i  c )  ->  ( ( ( ( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
) )  ->  (
( dom  g  i^i  dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h ) Pred ( R ,  A , 
a )  C_  ( dom  g  i^i  dom  h
) ) )  <->  ( (
( b  C_  A  /\  A. a  e.  b 
Pred ( R ,  A ,  a )  C_  b )  /\  (
c  C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
) )  ->  (
( b  i^i  c
)  C_  A  /\  A. a  e.  ( b  i^i  c ) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) ) ) )
6256, 61syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( g  Fn  b  /\  h  Fn  c )  ->  ( ( ( ( b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  ->  ( ( dom  g  i^i  dom  h
)  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h
) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i 
dom  h ) ) )  <->  ( ( ( b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  ->  ( (
b  i^i  c )  C_  A  /\  A. a  e.  ( b  i^i  c
) Pred ( R ,  A ,  a )  C_  ( b  i^i  c
) ) ) ) )
6354, 62mpbiri 248 . . . . . . . . . . . . . . 15  |-  ( ( g  Fn  b  /\  h  Fn  c )  ->  ( ( ( b 
C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  ->  ( ( dom  g  i^i  dom  h
)  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h
) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i 
dom  h ) ) ) )
6463imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
) )  ->  (
( dom  g  i^i  dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h ) Pred ( R ,  A , 
a )  C_  ( dom  g  i^i  dom  h
) ) )
65643adant3 1081 . . . . . . . . . . . . 13  |-  ( ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  /\  ( A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  ->  ( ( dom  g  i^i  dom  h
)  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h
) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i 
dom  h ) ) )
6665exlimivv 1860 . . . . . . . . . . . 12  |-  ( E. b E. c ( ( g  Fn  b  /\  h  Fn  c
)  /\  ( (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  ( c  C_  A  /\  A. a  e.  c  Pred ( R ,  A ,  a )  C_  c )
)  /\  ( A. a  e.  b  (
g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A , 
a ) ) )  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  ->  ( ( dom  g  i^i  dom  h
)  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h
) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i 
dom  h ) ) )
6734, 66sylbir 225 . . . . . . . . . . 11  |-  ( ( E. b ( g  Fn  b  /\  (
b  C_  A  /\  A. a  e.  b  Pred ( R ,  A , 
a )  C_  b
)  /\  A. a  e.  b  ( g `  a )  =  ( F `  ( g  |`  Pred ( R ,  A ,  a )
) ) )  /\  E. c ( h  Fn  c  /\  ( c 
C_  A  /\  A. a  e.  c  Pred ( R ,  A , 
a )  C_  c
)  /\  A. a  e.  c  ( h `  a )  =  ( F `  ( h  |`  Pred ( R ,  A ,  a )
) ) ) )  ->  ( ( dom  g  i^i  dom  h
)  C_  A  /\  A. a  e.  ( dom  g  i^i  dom  h
) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i 
dom  h ) ) )
6811, 30, 67syl2anb 496 . . . . . . . . . 10  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( dom  g  i^i  dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i 
dom  h ) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i  dom  h ) ) )
6968adantr 481 . . . . . . . . 9  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( ( dom  g  i^i  dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i 
dom  h ) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i  dom  h ) ) )
70 simpr 477 . . . . . . . . 9  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
a  e.  ( dom  g  i^i  dom  h
) )
71 preddowncl 5707 . . . . . . . . 9  |-  ( ( ( dom  g  i^i 
dom  h )  C_  A  /\  A. a  e.  ( dom  g  i^i 
dom  h ) Pred ( R ,  A ,  a )  C_  ( dom  g  i^i  dom  h ) )  -> 
( a  e.  ( dom  g  i^i  dom  h )  ->  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  = 
Pred ( R ,  A ,  a )
) )
7269, 70, 71sylc 65 . . . . . . . 8  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  ->  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a )  =  Pred ( R ,  A , 
a ) )
7328, 72syl5eq 2668 . . . . . . 7  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( ( dom  g  i^i  dom  h )  i^i 
Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) )  =  Pred ( R ,  A , 
a ) )
7473reseq2d 5396 . . . . . 6  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( g  |`  (
( dom  g  i^i  dom  h )  i^i  Pred ( R ,  ( dom  g  i^i  dom  h
) ,  a ) ) )  =  ( g  |`  Pred ( R ,  A ,  a ) ) )
7525, 74syl5eq 2668 . . . . 5  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( ( g  |`  ( dom  g  i^i  dom  h ) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) )  =  ( g  |`  Pred ( R ,  A ,  a ) ) )
7675fveq2d 6195 . . . 4  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( F `  (
( g  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) )  =  ( F `
 ( g  |`  Pred ( R ,  A ,  a ) ) ) )
7722, 24, 763eqtr4d 2666 . . 3  |-  ( ( ( g  e.  B  /\  h  e.  B
)  /\  a  e.  ( dom  g  i^i  dom  h ) )  -> 
( ( g  |`  ( dom  g  i^i  dom  h ) ) `  a )  =  ( F `  ( ( g  |`  ( dom  g  i^i  dom  h )
)  |`  Pred ( R , 
( dom  g  i^i  dom  h ) ,  a ) ) ) )
7877ralrimiva 2966 . 2  |-  ( ( g  e.  B  /\  h  e.  B )  ->  A. a  e.  ( dom  g  i^i  dom  h ) ( ( g  |`  ( dom  g  i^i  dom  h )
) `  a )  =  ( F `  ( ( g  |`  ( dom  g  i^i  dom  h ) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) )
797, 78jca 554 1  |-  ( ( g  e.  B  /\  h  e.  B )  ->  ( ( g  |`  ( dom  g  i^i  dom  h ) )  Fn  ( dom  g  i^i 
dom  h )  /\  A. a  e.  ( dom  g  i^i  dom  h
) ( ( g  |`  ( dom  g  i^i 
dom  h ) ) `
 a )  =  ( F `  (
( g  |`  ( dom  g  i^i  dom  h
) )  |`  Pred ( R ,  ( dom  g  i^i  dom  h ) ,  a ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912    i^i cin 3573    C_ wss 3574    We wwe 5072   dom cdm 5114    |` cres 5116   Predcpred 5679   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wfrlem5  7419
  Copyright terms: Public domain W3C validator