MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3g Structured version   Visualization version   Unicode version

Theorem wfr3g 7413
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Distinct variable groups:    y, A    y, F    y, G    y, H    y, R

Proof of Theorem wfr3g
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3064 . . . . . . 7  |-  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  <->  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
2 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
3 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( G `  z )  =  ( G `  w ) )
42, 3eqeq12d 2637 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  w )  =  ( G `  w ) ) )
54imbi2d 330 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) ) ) )
6 ra4v 3524 . . . . . . . . . . 11  |-  ( A. w  e.  Pred  ( R ,  A ,  z ) ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
7 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
8 predeq3 5684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
98reseq2d 5396 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  z )
) )
109fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( F  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) )
117, 10eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  <->  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) ) )
12 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
138reseq2d 5396 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( G  |`  Pred ( R ,  A ,  y )
)  =  ( G  |`  Pred ( R ,  A ,  z )
) )
1413fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( G  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
1512, 14eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( G `  y
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  y ) ) )  <->  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
1611, 15anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) ) )
1716rspcva 3307 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) )
18 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )
1918ancoms 469 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
20 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F `  z
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) )
2120ex 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  ->  ( F `  z )  =  ( G `  z ) ) )
2219, 21syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
2322expimpd 629 . . . . . . . . . . . . . . . . . 18  |-  ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  ->  (
( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
24 predss 5687 . . . . . . . . . . . . . . . . . . . . . 22  |-  Pred ( R ,  A , 
z )  C_  A
25 fvreseq 6319 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  z )  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2624, 25mpan2 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2726biimpar 502 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) ) )
2827eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( G  |`  Pred ( R ,  A ,  z ) )  =  ( F  |`  Pred ( R ,  A ,  z ) ) )
2928fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
3023, 29syl11 33 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3130expd 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( F  Fn  A  /\  G  Fn  A
)  ->  ( A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w )  ->  ( F `  z )  =  ( G `  z ) ) ) )
3217, 31syl 17 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
)  ->  ( F `  z )  =  ( G `  z ) ) ) )
3332ex 450 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3433com23 86 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  (
( F  Fn  A  /\  G  Fn  A
)  ->  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3534impd 447 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3635a2d 29 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
376, 36syl5 34 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  ->  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
385, 37wfis2g 5719 . . . . . . . . 9  |-  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
39 r19.21v 2960 . . . . . . . . 9  |-  ( A. z  e.  A  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4038, 39sylib 208 . . . . . . . 8  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4140com12 32 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
421, 41sylan2br 493 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4342an4s 869 . . . . 5  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4443com12 32 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
45443impib 1262 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) )
46 eqid 2622 . . 3  |-  A  =  A
4745, 46jctil 560 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
48 eqfnfv2 6312 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
4948ad2ant2r 783 . . 3  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
50493adant1 1079 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5147, 50mpbird 247 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   Se wse 5071    We wwe 5072    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wfrlem5  7419  wfr3  7435
  Copyright terms: Public domain W3C validator