MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunco Structured version   Visualization version   Unicode version

Theorem wunco 9555
Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1  |-  ( ph  ->  U  e. WUni )
wunop.2  |-  ( ph  ->  A  e.  U )
wunco.3  |-  ( ph  ->  B  e.  U )
Assertion
Ref Expression
wunco  |-  ( ph  ->  ( A  o.  B
)  e.  U )

Proof of Theorem wunco
StepHypRef Expression
1 wun0.1 . 2  |-  ( ph  ->  U  e. WUni )
2 wunco.3 . . . . 5  |-  ( ph  ->  B  e.  U )
31, 2wundm 9550 . . . 4  |-  ( ph  ->  dom  B  e.  U
)
4 dmcoss 5385 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
54a1i 11 . . . 4  |-  ( ph  ->  dom  ( A  o.  B )  C_  dom  B )
61, 3, 5wunss 9534 . . 3  |-  ( ph  ->  dom  ( A  o.  B )  e.  U
)
7 wunop.2 . . . . 5  |-  ( ph  ->  A  e.  U )
81, 7wunrn 9551 . . . 4  |-  ( ph  ->  ran  A  e.  U
)
9 rncoss 5386 . . . . 5  |-  ran  ( A  o.  B )  C_ 
ran  A
109a1i 11 . . . 4  |-  ( ph  ->  ran  ( A  o.  B )  C_  ran  A )
111, 8, 10wunss 9534 . . 3  |-  ( ph  ->  ran  ( A  o.  B )  e.  U
)
121, 6, 11wunxp 9546 . 2  |-  ( ph  ->  ( dom  ( A  o.  B )  X. 
ran  ( A  o.  B ) )  e.  U )
13 relco 5633 . . 3  |-  Rel  ( A  o.  B )
14 relssdmrn 5656 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
1513, 14mp1i 13 . 2  |-  ( ph  ->  ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
161, 12, 15wunss 9534 1  |-  ( ph  ->  ( A  o.  B
)  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   Rel wrel 5119  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-wun 9524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator