MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoss Structured version   Visualization version   Unicode version

Theorem dmcoss 5385
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss  |-  dom  ( A  o.  B )  C_ 
dom  B

Proof of Theorem dmcoss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 2027 . . . 4  |-  F/ y E. y  x B y
2 exsimpl 1795 . . . . 5  |-  ( E. z ( x B z  /\  z A y )  ->  E. z  x B z )
3 vex 3203 . . . . . 6  |-  x  e. 
_V
4 vex 3203 . . . . . 6  |-  y  e. 
_V
53, 4opelco 5293 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  <->  E. z ( x B z  /\  z A y ) )
6 breq2 4657 . . . . . 6  |-  ( y  =  z  ->  (
x B y  <->  x B
z ) )
76cbvexv 2275 . . . . 5  |-  ( E. y  x B y  <->  E. z  x B
z )
82, 5, 73imtr4i 281 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  ->  E. y  x B y )
91, 8exlimi 2086 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  o.  B )  ->  E. y  x B y )
103eldm2 5322 . . 3  |-  ( x  e.  dom  ( A  o.  B )  <->  E. y <. x ,  y >.  e.  ( A  o.  B
) )
113eldm 5321 . . 3  |-  ( x  e.  dom  B  <->  E. y  x B y )
129, 10, 113imtr4i 281 . 2  |-  ( x  e.  dom  ( A  o.  B )  ->  x  e.  dom  B )
1312ssriv 3607 1  |-  dom  ( A  o.  B )  C_ 
dom  B
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E.wex 1704    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653   dom cdm 5114    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-co 5123  df-dm 5124
This theorem is referenced by:  rncoss  5386  dmcosseq  5387  cossxp  5658  fvco4i  6276  cofunexg  7130  fin23lem30  9164  wunco  9555  relexpnndm  13781  mvdco  17865  f1omvdconj  17866  znleval  19903  ofco2  20257  tngtopn  22454  xppreima  29449  relexp0a  38008  dmtrclfvRP  38022
  Copyright terms: Public domain W3C validator