| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcogend | Structured version Visualization version Unicode version | ||
| Description: The most interesting case of the composition of two cross products. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xpcogend.1 |
|
| Ref | Expression |
|---|---|
| xpcogend |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcogend.1 |
. . . . . 6
| |
| 2 | n0 3931 |
. . . . . . 7
| |
| 3 | elin 3796 |
. . . . . . . 8
| |
| 4 | 3 | exbii 1774 |
. . . . . . 7
|
| 5 | 2, 4 | bitri 264 |
. . . . . 6
|
| 6 | 1, 5 | sylib 208 |
. . . . 5
|
| 7 | 6 | biantrud 528 |
. . . 4
|
| 8 | brxp 5147 |
. . . . . . 7
| |
| 9 | brxp 5147 |
. . . . . . . 8
| |
| 10 | ancom 466 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitri 264 |
. . . . . . 7
|
| 12 | 8, 11 | anbi12i 733 |
. . . . . 6
|
| 13 | 12 | exbii 1774 |
. . . . 5
|
| 14 | an4 865 |
. . . . . 6
| |
| 15 | 14 | exbii 1774 |
. . . . 5
|
| 16 | 19.42v 1918 |
. . . . 5
| |
| 17 | 13, 15, 16 | 3bitri 286 |
. . . 4
|
| 18 | 7, 17 | syl6rbbr 279 |
. . 3
|
| 19 | 18 | opabbidv 4716 |
. 2
|
| 20 | df-co 5123 |
. 2
| |
| 21 | df-xp 5120 |
. 2
| |
| 22 | 19, 20, 21 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-co 5123 |
| This theorem is referenced by: xpcoidgend 13714 |
| Copyright terms: Public domain | W3C validator |