MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcogend Structured version   Visualization version   Unicode version

Theorem xpcogend 13713
Description: The most interesting case of the composition of two cross products. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcogend.1  |-  ( ph  ->  ( B  i^i  C
)  =/=  (/) )
Assertion
Ref Expression
xpcogend  |-  ( ph  ->  ( ( C  X.  D )  o.  ( A  X.  B ) )  =  ( A  X.  D ) )

Proof of Theorem xpcogend
Dummy variables  x  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcogend.1 . . . . . 6  |-  ( ph  ->  ( B  i^i  C
)  =/=  (/) )
2 n0 3931 . . . . . . 7  |-  ( ( B  i^i  C )  =/=  (/)  <->  E. y  y  e.  ( B  i^i  C
) )
3 elin 3796 . . . . . . . 8  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
43exbii 1774 . . . . . . 7  |-  ( E. y  y  e.  ( B  i^i  C )  <->  E. y ( y  e.  B  /\  y  e.  C ) )
52, 4bitri 264 . . . . . 6  |-  ( ( B  i^i  C )  =/=  (/)  <->  E. y ( y  e.  B  /\  y  e.  C ) )
61, 5sylib 208 . . . . 5  |-  ( ph  ->  E. y ( y  e.  B  /\  y  e.  C ) )
76biantrud 528 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  z  e.  D )  <->  ( (
x  e.  A  /\  z  e.  D )  /\  E. y ( y  e.  B  /\  y  e.  C ) ) ) )
8 brxp 5147 . . . . . . 7  |-  ( x ( A  X.  B
) y  <->  ( x  e.  A  /\  y  e.  B ) )
9 brxp 5147 . . . . . . . 8  |-  ( y ( C  X.  D
) z  <->  ( y  e.  C  /\  z  e.  D ) )
10 ancom 466 . . . . . . . 8  |-  ( ( y  e.  C  /\  z  e.  D )  <->  ( z  e.  D  /\  y  e.  C )
)
119, 10bitri 264 . . . . . . 7  |-  ( y ( C  X.  D
) z  <->  ( z  e.  D  /\  y  e.  C ) )
128, 11anbi12i 733 . . . . . 6  |-  ( ( x ( A  X.  B ) y  /\  y ( C  X.  D ) z )  <-> 
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  D  /\  y  e.  C )
) )
1312exbii 1774 . . . . 5  |-  ( E. y ( x ( A  X.  B ) y  /\  y ( C  X.  D ) z )  <->  E. y
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  D  /\  y  e.  C )
) )
14 an4 865 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  D  /\  y  e.  C ) )  <->  ( (
x  e.  A  /\  z  e.  D )  /\  ( y  e.  B  /\  y  e.  C
) ) )
1514exbii 1774 . . . . 5  |-  ( E. y ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  D  /\  y  e.  C )
)  <->  E. y ( ( x  e.  A  /\  z  e.  D )  /\  ( y  e.  B  /\  y  e.  C
) ) )
16 19.42v 1918 . . . . 5  |-  ( E. y ( ( x  e.  A  /\  z  e.  D )  /\  (
y  e.  B  /\  y  e.  C )
)  <->  ( ( x  e.  A  /\  z  e.  D )  /\  E. y ( y  e.  B  /\  y  e.  C ) ) )
1713, 15, 163bitri 286 . . . 4  |-  ( E. y ( x ( A  X.  B ) y  /\  y ( C  X.  D ) z )  <->  ( (
x  e.  A  /\  z  e.  D )  /\  E. y ( y  e.  B  /\  y  e.  C ) ) )
187, 17syl6rbbr 279 . . 3  |-  ( ph  ->  ( E. y ( x ( A  X.  B ) y  /\  y ( C  X.  D ) z )  <-> 
( x  e.  A  /\  z  e.  D
) ) )
1918opabbidv 4716 . 2  |-  ( ph  ->  { <. x ,  z
>.  |  E. y
( x ( A  X.  B ) y  /\  y ( C  X.  D ) z ) }  =  { <. x ,  z >.  |  ( x  e.  A  /\  z  e.  D ) } )
20 df-co 5123 . 2  |-  ( ( C  X.  D )  o.  ( A  X.  B ) )  =  { <. x ,  z
>.  |  E. y
( x ( A  X.  B ) y  /\  y ( C  X.  D ) z ) }
21 df-xp 5120 . 2  |-  ( A  X.  D )  =  { <. x ,  z
>.  |  ( x  e.  A  /\  z  e.  D ) }
2219, 20, 213eqtr4g 2681 1  |-  ( ph  ->  ( ( C  X.  D )  o.  ( A  X.  B ) )  =  ( A  X.  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915   class class class wbr 4653   {copab 4712    X. cxp 5112    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-co 5123
This theorem is referenced by:  xpcoidgend  13714
  Copyright terms: Public domain W3C validator