| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpmapenlem | Structured version Visualization version Unicode version | ||
| Description: Lemma for xpmapen 8128. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpmapen.1 |
|
| xpmapen.2 |
|
| xpmapen.3 |
|
| xpmapenlem.4 |
|
| xpmapenlem.5 |
|
| xpmapenlem.6 |
|
| Ref | Expression |
|---|---|
| xpmapenlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 6678 |
. 2
| |
| 2 | ovex 6678 |
. . 3
| |
| 3 | ovex 6678 |
. . 3
| |
| 4 | 2, 3 | xpex 6962 |
. 2
|
| 5 | xpmapen.1 |
. . . . . . . . 9
| |
| 6 | xpmapen.2 |
. . . . . . . . 9
| |
| 7 | 5, 6 | xpex 6962 |
. . . . . . . 8
|
| 8 | xpmapen.3 |
. . . . . . . 8
| |
| 9 | 7, 8 | elmap 7886 |
. . . . . . 7
|
| 10 | ffvelrn 6357 |
. . . . . . 7
| |
| 11 | 9, 10 | sylanb 489 |
. . . . . 6
|
| 12 | xp1st 7198 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | xpmapenlem.4 |
. . . . 5
| |
| 15 | 13, 14 | fmptd 6385 |
. . . 4
|
| 16 | 5, 8 | elmap 7886 |
. . . 4
|
| 17 | 15, 16 | sylibr 224 |
. . 3
|
| 18 | xp2nd 7199 |
. . . . . 6
| |
| 19 | 11, 18 | syl 17 |
. . . . 5
|
| 20 | xpmapenlem.5 |
. . . . 5
| |
| 21 | 19, 20 | fmptd 6385 |
. . . 4
|
| 22 | 6, 8 | elmap 7886 |
. . . 4
|
| 23 | 21, 22 | sylibr 224 |
. . 3
|
| 24 | opelxpi 5148 |
. . 3
| |
| 25 | 17, 23, 24 | syl2anc 693 |
. 2
|
| 26 | xp1st 7198 |
. . . . . . 7
| |
| 27 | 5, 8 | elmap 7886 |
. . . . . . 7
|
| 28 | 26, 27 | sylib 208 |
. . . . . 6
|
| 29 | 28 | ffvelrnda 6359 |
. . . . 5
|
| 30 | xp2nd 7199 |
. . . . . . 7
| |
| 31 | 6, 8 | elmap 7886 |
. . . . . . 7
|
| 32 | 30, 31 | sylib 208 |
. . . . . 6
|
| 33 | 32 | ffvelrnda 6359 |
. . . . 5
|
| 34 | opelxpi 5148 |
. . . . 5
| |
| 35 | 29, 33, 34 | syl2anc 693 |
. . . 4
|
| 36 | xpmapenlem.6 |
. . . 4
| |
| 37 | 35, 36 | fmptd 6385 |
. . 3
|
| 38 | 7, 8 | elmap 7886 |
. . 3
|
| 39 | 37, 38 | sylibr 224 |
. 2
|
| 40 | 1st2nd2 7205 |
. . . . 5
| |
| 41 | 40 | ad2antlr 763 |
. . . 4
|
| 42 | 28 | feqmptd 6249 |
. . . . . . 7
|
| 43 | 42 | ad2antlr 763 |
. . . . . 6
|
| 44 | simplr 792 |
. . . . . . . . . . . 12
| |
| 45 | 44 | fveq1d 6193 |
. . . . . . . . . . 11
|
| 46 | opex 4932 |
. . . . . . . . . . . . 13
| |
| 47 | 36 | fvmpt2 6291 |
. . . . . . . . . . . . 13
|
| 48 | 46, 47 | mpan2 707 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantl 482 |
. . . . . . . . . . 11
|
| 50 | 45, 49 | eqtrd 2656 |
. . . . . . . . . 10
|
| 51 | 50 | fveq2d 6195 |
. . . . . . . . 9
|
| 52 | fvex 6201 |
. . . . . . . . . 10
| |
| 53 | fvex 6201 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | op1st 7176 |
. . . . . . . . 9
|
| 55 | 51, 54 | syl6eq 2672 |
. . . . . . . 8
|
| 56 | 55 | mpteq2dva 4744 |
. . . . . . 7
|
| 57 | 14, 56 | syl5eq 2668 |
. . . . . 6
|
| 58 | 43, 57 | eqtr4d 2659 |
. . . . 5
|
| 59 | 32 | feqmptd 6249 |
. . . . . . 7
|
| 60 | 59 | ad2antlr 763 |
. . . . . 6
|
| 61 | 50 | fveq2d 6195 |
. . . . . . . . 9
|
| 62 | 52, 53 | op2nd 7177 |
. . . . . . . . 9
|
| 63 | 61, 62 | syl6eq 2672 |
. . . . . . . 8
|
| 64 | 63 | mpteq2dva 4744 |
. . . . . . 7
|
| 65 | 20, 64 | syl5eq 2668 |
. . . . . 6
|
| 66 | 60, 65 | eqtr4d 2659 |
. . . . 5
|
| 67 | 58, 66 | opeq12d 4410 |
. . . 4
|
| 68 | 41, 67 | eqtrd 2656 |
. . 3
|
| 69 | simpll 790 |
. . . . . 6
| |
| 70 | 69, 9 | sylib 208 |
. . . . 5
|
| 71 | 70 | feqmptd 6249 |
. . . 4
|
| 72 | simpr 477 |
. . . . . . . . . . . 12
| |
| 73 | 72 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 74 | 17 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 75 | 23 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 76 | op1stg 7180 |
. . . . . . . . . . . 12
| |
| 77 | 74, 75, 76 | syl2anc 693 |
. . . . . . . . . . 11
|
| 78 | 73, 77 | eqtrd 2656 |
. . . . . . . . . 10
|
| 79 | 78 | fveq1d 6193 |
. . . . . . . . 9
|
| 80 | fvex 6201 |
. . . . . . . . . 10
| |
| 81 | 14 | fvmpt2 6291 |
. . . . . . . . . 10
|
| 82 | 80, 81 | mpan2 707 |
. . . . . . . . 9
|
| 83 | 79, 82 | sylan9eq 2676 |
. . . . . . . 8
|
| 84 | 72 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 85 | op2ndg 7181 |
. . . . . . . . . . . 12
| |
| 86 | 74, 75, 85 | syl2anc 693 |
. . . . . . . . . . 11
|
| 87 | 84, 86 | eqtrd 2656 |
. . . . . . . . . 10
|
| 88 | 87 | fveq1d 6193 |
. . . . . . . . 9
|
| 89 | fvex 6201 |
. . . . . . . . . 10
| |
| 90 | 20 | fvmpt2 6291 |
. . . . . . . . . 10
|
| 91 | 89, 90 | mpan2 707 |
. . . . . . . . 9
|
| 92 | 88, 91 | sylan9eq 2676 |
. . . . . . . 8
|
| 93 | 83, 92 | opeq12d 4410 |
. . . . . . 7
|
| 94 | 70 | ffvelrnda 6359 |
. . . . . . . 8
|
| 95 | 1st2nd2 7205 |
. . . . . . . 8
| |
| 96 | 94, 95 | syl 17 |
. . . . . . 7
|
| 97 | 93, 96 | eqtr4d 2659 |
. . . . . 6
|
| 98 | 97 | mpteq2dva 4744 |
. . . . 5
|
| 99 | 36, 98 | syl5eq 2668 |
. . . 4
|
| 100 | 71, 99 | eqtr4d 2659 |
. . 3
|
| 101 | 68, 100 | impbida 877 |
. 2
|
| 102 | 1, 4, 25, 39, 101 | en3i 7994 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-en 7956 |
| This theorem is referenced by: xpmapen 8128 |
| Copyright terms: Public domain | W3C validator |