MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapenlem Structured version   Visualization version   GIF version

Theorem xpmapenlem 8127
Description: Lemma for xpmapen 8128. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
xpmapenlem.4 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
xpmapenlem.5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
xpmapenlem.6 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
Assertion
Ref Expression
xpmapenlem ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐷,𝑧   𝑦,𝑅,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑦)

Proof of Theorem xpmapenlem
StepHypRef Expression
1 ovex 6678 . 2 ((𝐴 × 𝐵) ↑𝑚 𝐶) ∈ V
2 ovex 6678 . . 3 (𝐴𝑚 𝐶) ∈ V
3 ovex 6678 . . 3 (𝐵𝑚 𝐶) ∈ V
42, 3xpex 6962 . 2 ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) ∈ V
5 xpmapen.1 . . . . . . . . 9 𝐴 ∈ V
6 xpmapen.2 . . . . . . . . 9 𝐵 ∈ V
75, 6xpex 6962 . . . . . . . 8 (𝐴 × 𝐵) ∈ V
8 xpmapen.3 . . . . . . . 8 𝐶 ∈ V
97, 8elmap 7886 . . . . . . 7 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ↔ 𝑥:𝐶⟶(𝐴 × 𝐵))
10 ffvelrn 6357 . . . . . . 7 ((𝑥:𝐶⟶(𝐴 × 𝐵) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
119, 10sylanb 489 . . . . . 6 ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
12 xp1st 7198 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
1311, 12syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) ∈ 𝐴)
14 xpmapenlem.4 . . . . 5 𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
1513, 14fmptd 6385 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝐷:𝐶𝐴)
165, 8elmap 7886 . . . 4 (𝐷 ∈ (𝐴𝑚 𝐶) ↔ 𝐷:𝐶𝐴)
1715, 16sylibr 224 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝐷 ∈ (𝐴𝑚 𝐶))
18 xp2nd 7199 . . . . . 6 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
1911, 18syl 17 . . . . 5 ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) ∈ 𝐵)
20 xpmapenlem.5 . . . . 5 𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
2119, 20fmptd 6385 . . . 4 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝑅:𝐶𝐵)
226, 8elmap 7886 . . . 4 (𝑅 ∈ (𝐵𝑚 𝐶) ↔ 𝑅:𝐶𝐵)
2321, 22sylibr 224 . . 3 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝑅 ∈ (𝐵𝑚 𝐶))
24 opelxpi 5148 . . 3 ((𝐷 ∈ (𝐴𝑚 𝐶) ∧ 𝑅 ∈ (𝐵𝑚 𝐶)) → ⟨𝐷, 𝑅⟩ ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)))
2517, 23, 24syl2anc 693 . 2 (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → ⟨𝐷, 𝑅⟩ ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)))
26 xp1st 7198 . . . . . . 7 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (1st𝑦) ∈ (𝐴𝑚 𝐶))
275, 8elmap 7886 . . . . . . 7 ((1st𝑦) ∈ (𝐴𝑚 𝐶) ↔ (1st𝑦):𝐶𝐴)
2826, 27sylib 208 . . . . . 6 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (1st𝑦):𝐶𝐴)
2928ffvelrnda 6359 . . . . 5 ((𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) ∈ 𝐴)
30 xp2nd 7199 . . . . . . 7 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (2nd𝑦) ∈ (𝐵𝑚 𝐶))
316, 8elmap 7886 . . . . . . 7 ((2nd𝑦) ∈ (𝐵𝑚 𝐶) ↔ (2nd𝑦):𝐶𝐵)
3230, 31sylib 208 . . . . . 6 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (2nd𝑦):𝐶𝐵)
3332ffvelrnda 6359 . . . . 5 ((𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) ∈ 𝐵)
34 opelxpi 5148 . . . . 5 ((((1st𝑦)‘𝑧) ∈ 𝐴 ∧ ((2nd𝑦)‘𝑧) ∈ 𝐵) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ (𝐴 × 𝐵))
3529, 33, 34syl2anc 693 . . . 4 ((𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ (𝐴 × 𝐵))
36 xpmapenlem.6 . . . 4 𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
3735, 36fmptd 6385 . . 3 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → 𝑆:𝐶⟶(𝐴 × 𝐵))
387, 8elmap 7886 . . 3 (𝑆 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ↔ 𝑆:𝐶⟶(𝐴 × 𝐵))
3937, 38sylibr 224 . 2 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → 𝑆 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶))
40 1st2nd2 7205 . . . . 5 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4140ad2antlr 763 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4228feqmptd 6249 . . . . . . 7 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
4342ad2antlr 763 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
44 simplr 792 . . . . . . . . . . . 12 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → 𝑥 = 𝑆)
4544fveq1d 6193 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = (𝑆𝑧))
46 opex 4932 . . . . . . . . . . . . 13 ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V
4736fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑧𝐶 ∧ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ ∈ V) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4846, 47mpan2 707 . . . . . . . . . . . 12 (𝑧𝐶 → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
4948adantl 482 . . . . . . . . . . 11 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑆𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
5045, 49eqtrd 2656 . . . . . . . . . 10 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
5150fveq2d 6195 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
52 fvex 6201 . . . . . . . . . 10 ((1st𝑦)‘𝑧) ∈ V
53 fvex 6201 . . . . . . . . . 10 ((2nd𝑦)‘𝑧) ∈ V
5452, 53op1st 7176 . . . . . . . . 9 (1st ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((1st𝑦)‘𝑧)
5551, 54syl6eq 2672 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (1st ‘(𝑥𝑧)) = ((1st𝑦)‘𝑧))
5655mpteq2dva 4744 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (1st ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5714, 56syl5eq 2668 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝐷 = (𝑧𝐶 ↦ ((1st𝑦)‘𝑧)))
5843, 57eqtr4d 2659 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (1st𝑦) = 𝐷)
5932feqmptd 6249 . . . . . . 7 (𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶)) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6059ad2antlr 763 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6150fveq2d 6195 . . . . . . . . 9 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩))
6252, 53op2nd 7177 . . . . . . . . 9 (2nd ‘⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = ((2nd𝑦)‘𝑧)
6361, 62syl6eq 2672 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧𝐶) → (2nd ‘(𝑥𝑧)) = ((2nd𝑦)‘𝑧))
6463mpteq2dva 4744 . . . . . . 7 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧))) = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6520, 64syl5eq 2668 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑅 = (𝑧𝐶 ↦ ((2nd𝑦)‘𝑧)))
6660, 65eqtr4d 2659 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (2nd𝑦) = 𝑅)
6758, 66opeq12d 4410 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝐷, 𝑅⟩)
6841, 67eqtrd 2656 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = ⟨𝐷, 𝑅⟩)
69 simpll 790 . . . . . 6 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶))
7069, 9sylib 208 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥:𝐶⟶(𝐴 × 𝐵))
7170feqmptd 6249 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = (𝑧𝐶 ↦ (𝑥𝑧)))
72 simpr 477 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑦 = ⟨𝐷, 𝑅⟩)
7372fveq2d 6195 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = (1st ‘⟨𝐷, 𝑅⟩))
7417ad2antrr 762 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝐷 ∈ (𝐴𝑚 𝐶))
7523ad2antrr 762 . . . . . . . . . . . 12 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑅 ∈ (𝐵𝑚 𝐶))
76 op1stg 7180 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴𝑚 𝐶) ∧ 𝑅 ∈ (𝐵𝑚 𝐶)) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7774, 75, 76syl2anc 693 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st ‘⟨𝐷, 𝑅⟩) = 𝐷)
7873, 77eqtrd 2656 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (1st𝑦) = 𝐷)
7978fveq1d 6193 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((1st𝑦)‘𝑧) = (𝐷𝑧))
80 fvex 6201 . . . . . . . . . 10 (1st ‘(𝑥𝑧)) ∈ V
8114fvmpt2 6291 . . . . . . . . . 10 ((𝑧𝐶 ∧ (1st ‘(𝑥𝑧)) ∈ V) → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8280, 81mpan2 707 . . . . . . . . 9 (𝑧𝐶 → (𝐷𝑧) = (1st ‘(𝑥𝑧)))
8379, 82sylan9eq 2676 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((1st𝑦)‘𝑧) = (1st ‘(𝑥𝑧)))
8472fveq2d 6195 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = (2nd ‘⟨𝐷, 𝑅⟩))
85 op2ndg 7181 . . . . . . . . . . . 12 ((𝐷 ∈ (𝐴𝑚 𝐶) ∧ 𝑅 ∈ (𝐵𝑚 𝐶)) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8674, 75, 85syl2anc 693 . . . . . . . . . . 11 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd ‘⟨𝐷, 𝑅⟩) = 𝑅)
8784, 86eqtrd 2656 . . . . . . . . . 10 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (2nd𝑦) = 𝑅)
8887fveq1d 6193 . . . . . . . . 9 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → ((2nd𝑦)‘𝑧) = (𝑅𝑧))
89 fvex 6201 . . . . . . . . . 10 (2nd ‘(𝑥𝑧)) ∈ V
9020fvmpt2 6291 . . . . . . . . . 10 ((𝑧𝐶 ∧ (2nd ‘(𝑥𝑧)) ∈ V) → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
9189, 90mpan2 707 . . . . . . . . 9 (𝑧𝐶 → (𝑅𝑧) = (2nd ‘(𝑥𝑧)))
9288, 91sylan9eq 2676 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ((2nd𝑦)‘𝑧) = (2nd ‘(𝑥𝑧)))
9383, 92opeq12d 4410 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9470ffvelrnda 6359 . . . . . . . 8 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) ∈ (𝐴 × 𝐵))
95 1st2nd2 7205 . . . . . . . 8 ((𝑥𝑧) ∈ (𝐴 × 𝐵) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9694, 95syl 17 . . . . . . 7 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → (𝑥𝑧) = ⟨(1st ‘(𝑥𝑧)), (2nd ‘(𝑥𝑧))⟩)
9793, 96eqtr4d 2659 . . . . . 6 ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) ∧ 𝑧𝐶) → ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩ = (𝑥𝑧))
9897mpteq2dva 4744 . . . . 5 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩) = (𝑧𝐶 ↦ (𝑥𝑧)))
9936, 98syl5eq 2668 . . . 4 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑆 = (𝑧𝐶 ↦ (𝑥𝑧)))
10071, 99eqtr4d 2659 . . 3 (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) ∧ 𝑦 = ⟨𝐷, 𝑅⟩) → 𝑥 = 𝑆)
10168, 100impbida 877 . 2 ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))) → (𝑥 = 𝑆𝑦 = ⟨𝐷, 𝑅⟩))
1021, 4, 25, 39, 101en3i 7994 1 ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-en 7956
This theorem is referenced by:  xpmapen  8128
  Copyright terms: Public domain W3C validator