MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   Unicode version

Theorem alephadd 9399
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
)

Proof of Theorem alephadd
StepHypRef Expression
1 ovex 6678 . . . 4  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  e.  _V
2 alephfnon 8888 . . . . . . . 8  |-  aleph  Fn  On
3 fndm 5990 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
42, 3ax-mp 5 . . . . . . 7  |-  dom  aleph  =  On
54eleq2i 2693 . . . . . 6  |-  ( A  e.  dom  aleph  <->  A  e.  On )
65notbii 310 . . . . 5  |-  ( -.  A  e.  dom  aleph  <->  -.  A  e.  On )
74eleq2i 2693 . . . . . 6  |-  ( B  e.  dom  aleph  <->  B  e.  On )
87notbii 310 . . . . 5  |-  ( -.  B  e.  dom  aleph  <->  -.  B  e.  On )
9 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
10 cdaval 8992 . . . . . . . 8  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  ( (/)  +c  (/) )  =  ( ( (/)  X.  { (/)
} )  u.  ( (/) 
X.  { 1o }
) ) )
119, 9, 10mp2an 708 . . . . . . 7  |-  ( (/)  +c  (/) )  =  (
( (/)  X.  { (/) } )  u.  ( (/)  X. 
{ 1o } ) )
12 xpundi 5171 . . . . . . 7  |-  ( (/)  X.  ( { (/) }  u.  { 1o } ) )  =  ( ( (/)  X. 
{ (/) } )  u.  ( (/)  X.  { 1o } ) )
13 0xp 5199 . . . . . . 7  |-  ( (/)  X.  ( { (/) }  u.  { 1o } ) )  =  (/)
1411, 12, 133eqtr2i 2650 . . . . . 6  |-  ( (/)  +c  (/) )  =  (/)
15 ndmfv 6218 . . . . . . 7  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
16 ndmfv 6218 . . . . . . 7  |-  ( -.  B  e.  dom  aleph  ->  ( aleph `  B )  =  (/) )
1715, 16oveqan12d 6669 . . . . . 6  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  +c  ( aleph `  B )
)  =  ( (/)  +c  (/) ) )
1815adantr 481 . . . . . . . 8  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( aleph `  A )  =  (/) )
1916adantl 482 . . . . . . . 8  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( aleph `  B )  =  (/) )
2018, 19uneq12d 3768 . . . . . . 7  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  u.  ( aleph `  B )
)  =  ( (/)  u.  (/) ) )
21 un0 3967 . . . . . . 7  |-  ( (/)  u.  (/) )  =  (/)
2220, 21syl6eq 2672 . . . . . 6  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  u.  ( aleph `  B )
)  =  (/) )
2314, 17, 223eqtr4a 2682 . . . . 5  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  +c  ( aleph `  B )
)  =  ( (
aleph `  A )  u.  ( aleph `  B )
) )
246, 8, 23syl2anbr 497 . . . 4  |-  ( ( -.  A  e.  On  /\ 
-.  B  e.  On )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) )  =  ( ( aleph `  A )  u.  ( aleph `  B ) ) )
25 eqeng 7989 . . . 4  |-  ( ( ( aleph `  A )  +c  ( aleph `  B )
)  e.  _V  ->  ( ( ( aleph `  A
)  +c  ( aleph `  B ) )  =  ( ( aleph `  A
)  u.  ( aleph `  B ) )  -> 
( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) ) )
261, 24, 25mpsyl 68 . . 3  |-  ( ( -.  A  e.  On  /\ 
-.  B  e.  On )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) ) 
~~  ( ( aleph `  A )  u.  ( aleph `  B ) ) )
2726ex 450 . 2  |-  ( -.  A  e.  On  ->  ( -.  B  e.  On  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) ) )
28 alephgeom 8905 . . 3  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
29 fvex 6201 . . . . 5  |-  ( aleph `  A )  e.  _V
30 ssdomg 8001 . . . . 5  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
3129, 30ax-mp 5 . . . 4  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
32 alephon 8892 . . . . . 6  |-  ( aleph `  A )  e.  On
33 onenon 8775 . . . . . 6  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
3432, 33ax-mp 5 . . . . 5  |-  ( aleph `  A )  e.  dom  card
35 alephon 8892 . . . . . 6  |-  ( aleph `  B )  e.  On
36 onenon 8775 . . . . . 6  |-  ( (
aleph `  B )  e.  On  ->  ( aleph `  B )  e.  dom  card )
3735, 36ax-mp 5 . . . . 5  |-  ( aleph `  B )  e.  dom  card
38 infcda 9030 . . . . 5  |-  ( ( ( aleph `  A )  e.  dom  card  /\  ( aleph `  B )  e. 
dom  card  /\  om  ~<_  ( aleph `  A ) )  -> 
( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
3934, 37, 38mp3an12 1414 . . . 4  |-  ( om  ~<_  ( aleph `  A )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
4031, 39syl 17 . . 3  |-  ( om  C_  ( aleph `  A )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
4128, 40sylbi 207 . 2  |-  ( A  e.  On  ->  (
( aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
) )
42 alephgeom 8905 . . 3  |-  ( B  e.  On  <->  om  C_  ( aleph `  B ) )
43 fvex 6201 . . . . 5  |-  ( aleph `  B )  e.  _V
44 ssdomg 8001 . . . . 5  |-  ( (
aleph `  B )  e. 
_V  ->  ( om  C_  ( aleph `  B )  ->  om 
~<_  ( aleph `  B )
) )
4543, 44ax-mp 5 . . . 4  |-  ( om  C_  ( aleph `  B )  ->  om  ~<_  ( aleph `  B
) )
46 cdacomen 9003 . . . . . 6  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  B )  +c  ( aleph `  A )
)
47 infcda 9030 . . . . . . 7  |-  ( ( ( aleph `  B )  e.  dom  card  /\  ( aleph `  A )  e. 
dom  card  /\  om  ~<_  ( aleph `  B ) )  -> 
( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
4837, 34, 47mp3an12 1414 . . . . . 6  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
49 entr 8008 . . . . . 6  |-  ( ( ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  B
)  +c  ( aleph `  A ) )  /\  ( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) ) 
~~  ( ( aleph `  B )  u.  ( aleph `  A ) ) )
5046, 48, 49sylancr 695 . . . . 5  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
51 uncom 3757 . . . . 5  |-  ( (
aleph `  B )  u.  ( aleph `  A )
)  =  ( (
aleph `  A )  u.  ( aleph `  B )
)
5250, 51syl6breq 4694 . . . 4  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
5345, 52syl 17 . . 3  |-  ( om  C_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
5442, 53sylbi 207 . 2  |-  ( B  e.  On  ->  (
( aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
) )
5527, 41, 54pm2.61ii 177 1  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Oncon0 5723    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   omcom 7065   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   alephcale 8762    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cda 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator