| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephadd | Structured version Visualization version Unicode version | ||
| Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| alephadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 6678 |
. . . 4
| |
| 2 | alephfnon 8888 |
. . . . . . . 8
| |
| 3 | fndm 5990 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | 4 | eleq2i 2693 |
. . . . . 6
|
| 6 | 5 | notbii 310 |
. . . . 5
|
| 7 | 4 | eleq2i 2693 |
. . . . . 6
|
| 8 | 7 | notbii 310 |
. . . . 5
|
| 9 | 0ex 4790 |
. . . . . . . 8
| |
| 10 | cdaval 8992 |
. . . . . . . 8
| |
| 11 | 9, 9, 10 | mp2an 708 |
. . . . . . 7
|
| 12 | xpundi 5171 |
. . . . . . 7
| |
| 13 | 0xp 5199 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | 3eqtr2i 2650 |
. . . . . 6
|
| 15 | ndmfv 6218 |
. . . . . . 7
| |
| 16 | ndmfv 6218 |
. . . . . . 7
| |
| 17 | 15, 16 | oveqan12d 6669 |
. . . . . 6
|
| 18 | 15 | adantr 481 |
. . . . . . . 8
|
| 19 | 16 | adantl 482 |
. . . . . . . 8
|
| 20 | 18, 19 | uneq12d 3768 |
. . . . . . 7
|
| 21 | un0 3967 |
. . . . . . 7
| |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . 6
|
| 23 | 14, 17, 22 | 3eqtr4a 2682 |
. . . . 5
|
| 24 | 6, 8, 23 | syl2anbr 497 |
. . . 4
|
| 25 | eqeng 7989 |
. . . 4
| |
| 26 | 1, 24, 25 | mpsyl 68 |
. . 3
|
| 27 | 26 | ex 450 |
. 2
|
| 28 | alephgeom 8905 |
. . 3
| |
| 29 | fvex 6201 |
. . . . 5
| |
| 30 | ssdomg 8001 |
. . . . 5
| |
| 31 | 29, 30 | ax-mp 5 |
. . . 4
|
| 32 | alephon 8892 |
. . . . . 6
| |
| 33 | onenon 8775 |
. . . . . 6
| |
| 34 | 32, 33 | ax-mp 5 |
. . . . 5
|
| 35 | alephon 8892 |
. . . . . 6
| |
| 36 | onenon 8775 |
. . . . . 6
| |
| 37 | 35, 36 | ax-mp 5 |
. . . . 5
|
| 38 | infcda 9030 |
. . . . 5
| |
| 39 | 34, 37, 38 | mp3an12 1414 |
. . . 4
|
| 40 | 31, 39 | syl 17 |
. . 3
|
| 41 | 28, 40 | sylbi 207 |
. 2
|
| 42 | alephgeom 8905 |
. . 3
| |
| 43 | fvex 6201 |
. . . . 5
| |
| 44 | ssdomg 8001 |
. . . . 5
| |
| 45 | 43, 44 | ax-mp 5 |
. . . 4
|
| 46 | cdacomen 9003 |
. . . . . 6
| |
| 47 | infcda 9030 |
. . . . . . 7
| |
| 48 | 37, 34, 47 | mp3an12 1414 |
. . . . . 6
|
| 49 | entr 8008 |
. . . . . 6
| |
| 50 | 46, 48, 49 | sylancr 695 |
. . . . 5
|
| 51 | uncom 3757 |
. . . . 5
| |
| 52 | 50, 51 | syl6breq 4694 |
. . . 4
|
| 53 | 45, 52 | syl 17 |
. . 3
|
| 54 | 42, 53 | sylbi 207 |
. 2
|
| 55 | 27, 41, 54 | pm2.61ii 177 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-card 8765 df-aleph 8766 df-cda 8990 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |