MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp Structured version   Visualization version   Unicode version

Theorem opeliunxp 5170
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )

Proof of Theorem opeliunxp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4522 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  { y  |  E. x  e.  A  y  e.  ( { x }  X.  B ) }
21eleq2i 2693 . 2  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. x ,  C >.  e.  { y  |  E. x  e.  A  y  e.  ( { x }  X.  B ) } )
3 opex 4932 . . 3  |-  <. x ,  C >.  e.  _V
4 df-rex 2918 . . . . 5  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. x
( x  e.  A  /\  y  e.  ( { x }  X.  B ) ) )
5 nfv 1843 . . . . . 6  |-  F/ z ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )
6 nfs1v 2437 . . . . . . 7  |-  F/ x [ z  /  x ] x  e.  A
7 nfcv 2764 . . . . . . . . 9  |-  F/_ x { z }
8 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ B
97, 8nfxp 5142 . . . . . . . 8  |-  F/_ x
( { z }  X.  [_ z  /  x ]_ B )
109nfcri 2758 . . . . . . 7  |-  F/ x  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
)
116, 10nfan 1828 . . . . . 6  |-  F/ x
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )
12 sbequ12 2111 . . . . . . 7  |-  ( x  =  z  ->  (
x  e.  A  <->  [ z  /  x ] x  e.  A ) )
13 sneq 4187 . . . . . . . . 9  |-  ( x  =  z  ->  { x }  =  { z } )
14 csbeq1a 3542 . . . . . . . . 9  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1513, 14xpeq12d 5140 . . . . . . . 8  |-  ( x  =  z  ->  ( { x }  X.  B )  =  ( { z }  X.  [_ z  /  x ]_ B ) )
1615eleq2d 2687 . . . . . . 7  |-  ( x  =  z  ->  (
y  e.  ( { x }  X.  B
)  <->  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
1712, 16anbi12d 747 . . . . . 6  |-  ( x  =  z  ->  (
( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  ( [
z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) ) ) )
185, 11, 17cbvex 2272 . . . . 5  |-  ( E. x ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
194, 18bitri 264 . . . 4  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
20 eleq1 2689 . . . . . 6  |-  ( y  =  <. x ,  C >.  ->  ( y  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
2120anbi2d 740 . . . . 5  |-  ( y  =  <. x ,  C >.  ->  ( ( [ z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) )  <->  ( [
z  /  x ]
x  e.  A  /\  <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2221exbidv 1850 . . . 4  |-  ( y  =  <. x ,  C >.  ->  ( E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2319, 22syl5bb 272 . . 3  |-  ( y  =  <. x ,  C >.  ->  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
243, 23elab 3350 . 2  |-  ( <.
x ,  C >.  e. 
{ y  |  E. x  e.  A  y  e.  ( { x }  X.  B ) }  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
25 opelxp 5146 . . . . . 6  |-  ( <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  ( x  e.  { z }  /\  C  e.  [_ z  /  x ]_ B ) )
2625anbi2i 730 . . . . 5  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( [ z  /  x ] x  e.  A  /\  (
x  e.  { z }  /\  C  e. 
[_ z  /  x ]_ B ) ) )
27 an12 838 . . . . 5  |-  ( ( [ z  /  x ] x  e.  A  /\  ( x  e.  {
z }  /\  C  e.  [_ z  /  x ]_ B ) )  <->  ( x  e.  { z }  /\  ( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
28 velsn 4193 . . . . . . 7  |-  ( x  e.  { z }  <-> 
x  =  z )
29 equcom 1945 . . . . . . 7  |-  ( x  =  z  <->  z  =  x )
3028, 29bitri 264 . . . . . 6  |-  ( x  e.  { z }  <-> 
z  =  x )
3130anbi1i 731 . . . . 5  |-  ( ( x  e.  { z }  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
3226, 27, 313bitri 286 . . . 4  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
3332exbii 1774 . . 3  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
34 sbequ12r 2112 . . . . 5  |-  ( z  =  x  ->  ( [ z  /  x ] x  e.  A  <->  x  e.  A ) )
3514equcoms 1947 . . . . . . 7  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
3635eqcomd 2628 . . . . . 6  |-  ( z  =  x  ->  [_ z  /  x ]_ B  =  B )
3736eleq2d 2687 . . . . 5  |-  ( z  =  x  ->  ( C  e.  [_ z  /  x ]_ B  <->  C  e.  B ) )
3834, 37anbi12d 747 . . . 4  |-  ( z  =  x  ->  (
( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B )  <-> 
( x  e.  A  /\  C  e.  B
) ) )
3938equsexvw 1932 . . 3  |-  ( E. z ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( x  e.  A  /\  C  e.  B
) )
4033, 39bitri 264 . 2  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( x  e.  A  /\  C  e.  B ) )
412, 24, 403bitri 286 1  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704   [wsb 1880    e. wcel 1990   {cab 2608   E.wrex 2913   [_csb 3533   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-xp 5120
This theorem is referenced by:  eliunxp  5259  opeliunxp2  5260  opeliunxp2f  7336  gsum2d2lem  18372  gsum2d2  18373  gsumcom2  18374  dprdval  18402  ptbasfi  21384  cnextfun  21868  cnextfvval  21869  cnextf  21870  dvbsss  23666  iunsnima  29428
  Copyright terms: Public domain W3C validator