| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfcndpow | Structured version Visualization version Unicode version | ||
| Description: Axiom of Power Sets ax-pow 4843, reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness," dtru 4857. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| zfcndpow |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru 4857 |
. . . . 5
| |
| 2 | exnal 1754 |
. . . . 5
| |
| 3 | 1, 2 | mpbir 221 |
. . . 4
|
| 4 | nfe1 2027 |
. . . . 5
| |
| 5 | axpownd 9423 |
. . . . 5
| |
| 6 | 4, 5 | exlimi 2086 |
. . . 4
|
| 7 | 3, 6 | ax-mp 5 |
. . 3
|
| 8 | 19.9v 1896 |
. . . . . . . 8
| |
| 9 | 19.3v 1897 |
. . . . . . . 8
| |
| 10 | 8, 9 | imbi12i 340 |
. . . . . . 7
|
| 11 | 10 | albii 1747 |
. . . . . 6
|
| 12 | 11 | imbi1i 339 |
. . . . 5
|
| 13 | 12 | albii 1747 |
. . . 4
|
| 14 | 13 | exbii 1774 |
. . 3
|
| 15 | 7, 14 | mpbi 220 |
. 2
|
| 16 | elequ1 1997 |
. . . . . . 7
| |
| 17 | elequ1 1997 |
. . . . . . 7
| |
| 18 | 16, 17 | imbi12d 334 |
. . . . . 6
|
| 19 | 18 | cbvalv 2273 |
. . . . 5
|
| 20 | 19 | imbi1i 339 |
. . . 4
|
| 21 | 20 | albii 1747 |
. . 3
|
| 22 | 21 | exbii 1774 |
. 2
|
| 23 | 15, 22 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |