| Step | Hyp | Ref
| Expression |
| 1 | | psgnunilem4.w1 |
. 2
⊢ (𝜑 → 𝑊 ∈ Word 𝑇) |
| 2 | | psgnunilem4.w2 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) |
| 3 | | wrdfin 13323 |
. . . . 5
⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Fin) |
| 4 | | hashcl 13147 |
. . . . 5
⊢ (𝑊 ∈ Fin →
(#‘𝑊) ∈
ℕ0) |
| 5 | 1, 3, 4 | 3syl 18 |
. . . 4
⊢ (𝜑 → (#‘𝑊) ∈
ℕ0) |
| 6 | | nn0uz 11722 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
| 7 | 5, 6 | syl6eleq 2711 |
. . 3
⊢ (𝜑 → (#‘𝑊) ∈
(ℤ≥‘0)) |
| 8 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (#‘𝑤) =
(#‘∅)) |
| 9 | | hash0 13158 |
. . . . . . . . 9
⊢
(#‘∅) = 0 |
| 10 | 8, 9 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (#‘𝑤) = 0) |
| 11 | 10 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑤 = ∅ →
(-1↑(#‘𝑤)) =
(-1↑0)) |
| 12 | | neg1cn 11124 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
| 13 | | exp0 12864 |
. . . . . . . 8
⊢ (-1
∈ ℂ → (-1↑0) = 1) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢
(-1↑0) = 1 |
| 15 | 11, 14 | syl6eq 2672 |
. . . . . 6
⊢ (𝑤 = ∅ →
(-1↑(#‘𝑤)) =
1) |
| 16 | 15 | 2a1d 26 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) → ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1))) |
| 17 | | psgnunilem4.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = (SymGrp‘𝐷) |
| 18 | | psgnunilem4.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| 19 | | simpl1 1064 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝜑) |
| 20 | | psgnunilem4.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝐷 ∈ 𝑉) |
| 22 | | simpl3l 1116 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇) |
| 23 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (#‘𝑤) = (#‘𝑤)) |
| 24 | | wrdfin 13323 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ Word 𝑇 → 𝑤 ∈ Fin) |
| 25 | 22, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin) |
| 26 | | simpl2 1065 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅) |
| 27 | | hashnncl 13157 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ Fin →
((#‘𝑤) ∈ ℕ
↔ 𝑤 ≠
∅)) |
| 28 | 27 | biimpar 502 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) →
(#‘𝑤) ∈
ℕ) |
| 29 | 25, 26, 28 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (#‘𝑤) ∈
ℕ) |
| 30 | | simpl3r 1117 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) |
| 31 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦)) |
| 32 | 31 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((#‘𝑥) = ((#‘𝑤) − 2) ↔ (#‘𝑦) = ((#‘𝑤) − 2))) |
| 33 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦)) |
| 34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
| 35 | 32, 34 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))) |
| 36 | 35 | cbvrexv 3172 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
| 37 | 36 | notbii 310 |
. . . . . . . . . . . . . . 15
⊢ (¬
∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
| 38 | 37 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
| 40 | 17, 18, 21, 22, 23, 29, 30, 39 | psgnunilem3 17916 |
. . . . . . . . . . . 12
⊢ ¬
((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
| 41 | | iman 440 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ↔ ¬ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) |
| 42 | 40, 41 | mpbir 221 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
| 43 | | df-rex 2918 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) |
| 44 | 42, 43 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) |
| 45 | | simprl 794 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 𝑥 ∈ Word 𝑇) |
| 46 | | simprrr 805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) |
| 47 | 45, 46 | jca 554 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
| 48 | | wrdfin 13323 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ Word 𝑇 → 𝑥 ∈ Fin) |
| 49 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ Fin →
(#‘𝑥) ∈
ℕ0) |
| 50 | 45, 48, 49 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) ∈
ℕ0) |
| 51 | | simp3l 1089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇) |
| 52 | 51, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin) |
| 53 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅) |
| 54 | 52, 53, 28 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (#‘𝑤) ∈
ℕ) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈
ℕ) |
| 56 | | simprrl 804 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) = ((#‘𝑤) − 2)) |
| 57 | 55 | nnred 11035 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈
ℝ) |
| 58 | | 2rp 11837 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ+ |
| 59 | | ltsubrp 11866 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((#‘𝑤) ∈
ℝ ∧ 2 ∈ ℝ+) → ((#‘𝑤) − 2) < (#‘𝑤)) |
| 60 | 57, 58, 59 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((#‘𝑤) − 2) < (#‘𝑤)) |
| 61 | 56, 60 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) < (#‘𝑤)) |
| 62 | | elfzo0 12508 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝑥) ∈
(0..^(#‘𝑤)) ↔
((#‘𝑥) ∈
ℕ0 ∧ (#‘𝑤) ∈ ℕ ∧ (#‘𝑥) < (#‘𝑤))) |
| 63 | 50, 55, 61, 62 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) ∈ (0..^(#‘𝑤))) |
| 64 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢
(((#‘𝑥) ∈
(0..^(#‘𝑤)) →
((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ ((#‘𝑥) ∈
(0..^(#‘𝑤)) →
((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) |
| 65 | 64 | com13 88 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ((#‘𝑥) ∈ (0..^(#‘𝑤)) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑥)) = 1))) |
| 66 | 47, 63, 65 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑥)) = 1)) |
| 67 | 56 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
(-1↑(#‘𝑥)) =
(-1↑((#‘𝑤)
− 2))) |
| 68 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ∈
ℂ) |
| 69 | | neg1ne0 11126 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ≠
0 |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ≠
0) |
| 71 | | 2z 11409 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℤ |
| 72 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 2 ∈
ℤ) |
| 73 | 55 | nnzd 11481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈
ℤ) |
| 74 | 68, 70, 72, 73 | expsubd 13019 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
(-1↑((#‘𝑤)
− 2)) = ((-1↑(#‘𝑤)) / (-1↑2))) |
| 75 | | neg1sqe1 12959 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-1↑2) = 1 |
| 76 | 75 | oveq2i 6661 |
. . . . . . . . . . . . . . . . . 18
⊢
((-1↑(#‘𝑤)) / (-1↑2)) = ((-1↑(#‘𝑤)) / 1) |
| 77 | | m1expcl 12883 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝑤) ∈
ℤ → (-1↑(#‘𝑤)) ∈ ℤ) |
| 78 | 77 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝑤) ∈
ℤ → (-1↑(#‘𝑤)) ∈ ℂ) |
| 79 | 73, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
(-1↑(#‘𝑤))
∈ ℂ) |
| 80 | 79 | div1d 10793 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
((-1↑(#‘𝑤)) / 1)
= (-1↑(#‘𝑤))) |
| 81 | 76, 80 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
((-1↑(#‘𝑤)) /
(-1↑2)) = (-1↑(#‘𝑤))) |
| 82 | 67, 74, 81 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
(-1↑(#‘𝑥)) =
(-1↑(#‘𝑤))) |
| 83 | 82 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) →
((-1↑(#‘𝑥)) = 1
↔ (-1↑(#‘𝑤)) = 1)) |
| 84 | 66, 83 | sylibd 229 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑤)) = 1)) |
| 85 | 84 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑤)) = 1))) |
| 86 | 85 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ ((𝑥 ∈ Word
𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) →
(-1↑(#‘𝑤)) =
1))) |
| 87 | 86 | alimdv 1845 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ ∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) →
(-1↑(#‘𝑤)) =
1))) |
| 88 | | 19.23v 1902 |
. . . . . . . . . . 11
⊢
(∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) →
(-1↑(#‘𝑤)) = 1)
↔ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) →
(-1↑(#‘𝑤)) =
1)) |
| 89 | 87, 88 | syl6ib 241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) →
(-1↑(#‘𝑤)) =
1))) |
| 90 | 44, 89 | mpid 44 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑤)) = 1)) |
| 91 | 90 | 3exp 1264 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ≠ ∅ → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ (-1↑(#‘𝑤)) = 1)))) |
| 92 | 91 | com34 91 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ≠ ∅ → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1)))) |
| 93 | 92 | com12 32 |
. . . . . 6
⊢ (𝑤 ≠ ∅ → (𝜑 → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) = 1))
→ ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1)))) |
| 94 | 93 | impd 447 |
. . . . 5
⊢ (𝑤 ≠ ∅ → ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) → ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1))) |
| 95 | 16, 94 | pm2.61ine 2877 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) → ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1)) |
| 96 | 95 | 3adant2 1080 |
. . 3
⊢ ((𝜑 ∧ (#‘𝑤) ∈ (0...(#‘𝑊)) ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) → ((𝑤 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) =
1)) |
| 97 | | eleq1 2689 |
. . . . 5
⊢ (𝑤 = 𝑥 → (𝑤 ∈ Word 𝑇 ↔ 𝑥 ∈ Word 𝑇)) |
| 98 | | oveq2 6658 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥)) |
| 99 | 98 | eqeq1d 2624 |
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
| 100 | 97, 99 | anbi12d 747 |
. . . 4
⊢ (𝑤 = 𝑥 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) |
| 101 | | fveq2 6191 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (#‘𝑤) = (#‘𝑥)) |
| 102 | 101 | oveq2d 6666 |
. . . . 5
⊢ (𝑤 = 𝑥 → (-1↑(#‘𝑤)) = (-1↑(#‘𝑥))) |
| 103 | 102 | eqeq1d 2624 |
. . . 4
⊢ (𝑤 = 𝑥 → ((-1↑(#‘𝑤)) = 1 ↔ (-1↑(#‘𝑥)) = 1)) |
| 104 | 100, 103 | imbi12d 334 |
. . 3
⊢ (𝑤 = 𝑥 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) = 1)
↔ ((𝑥 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑥)) =
1))) |
| 105 | | eleq1 2689 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑤 ∈ Word 𝑇 ↔ 𝑊 ∈ Word 𝑇)) |
| 106 | | oveq2 6658 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊)) |
| 107 | 106 | eqeq1d 2624 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))) |
| 108 | 105, 107 | anbi12d 747 |
. . . 4
⊢ (𝑤 = 𝑊 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))) |
| 109 | | fveq2 6191 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊)) |
| 110 | 109 | oveq2d 6666 |
. . . . 5
⊢ (𝑤 = 𝑊 → (-1↑(#‘𝑤)) = (-1↑(#‘𝑊))) |
| 111 | 110 | eqeq1d 2624 |
. . . 4
⊢ (𝑤 = 𝑊 → ((-1↑(#‘𝑤)) = 1 ↔
(-1↑(#‘𝑊)) =
1)) |
| 112 | 108, 111 | imbi12d 334 |
. . 3
⊢ (𝑤 = 𝑊 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑤)) = 1)
↔ ((𝑊 ∈ Word
𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑊)) =
1))) |
| 113 | 1, 7, 96, 104, 112, 101, 109 | uzindi 12781 |
. 2
⊢ (𝜑 → ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) →
(-1↑(#‘𝑊)) =
1)) |
| 114 | 1, 2, 113 | mp2and 715 |
1
⊢ (𝜑 → (-1↑(#‘𝑊)) = 1) |