Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex2 Structured version   Visualization version   GIF version

Theorem 4atexlemex2 35357
Description: Lemma for 4atexlem7 35361. Show that when 𝐶𝑆, 𝐶 satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemex2 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐶   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝑇(𝑧)   𝑈(𝑧)   𝐻(𝑧)   𝐾(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem 4atexlemex2
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
9 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
101, 2, 3, 4, 5, 6, 7, 8, 94atexlemc 35355 . . 3 (𝜑𝐶𝐴)
1110adantr 481 . 2 ((𝜑𝐶𝑆) → 𝐶𝐴)
121, 2, 3, 4, 5, 6, 7, 8, 94atexlemnclw 35356 . . 3 (𝜑 → ¬ 𝐶 𝑊)
1312adantr 481 . 2 ((𝜑𝐶𝑆) → ¬ 𝐶 𝑊)
141, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 35354 . . . . 5 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
15 id 22 . . . . . . . . . . 11 (𝐶 = 𝑃𝐶 = 𝑃)
169, 15syl5eqr 2670 . . . . . . . . . 10 (𝐶 = 𝑃 → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1716adantl 482 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1814atexlemkl 35343 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Lat)
191, 3, 54atexlemqtb 35347 . . . . . . . . . . . 12 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
201, 3, 54atexlempsb 35346 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
21 eqid 2622 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2221, 2, 4latmle1 17076 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2318, 19, 20, 22syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2414atexlemk 35333 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
2514atexlemq 35337 . . . . . . . . . . . 12 (𝜑𝑄𝐴)
2614atexlemt 35339 . . . . . . . . . . . 12 (𝜑𝑇𝐴)
273, 5hlatjcom 34654 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
2824, 25, 26, 27syl3anc 1326 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
2923, 28breqtrd 4679 . . . . . . . . . 10 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3029adantr 481 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3117, 30eqbrtrrd 4677 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → 𝑃 (𝑇 𝑄))
3214atexlemkc 35344 . . . . . . . . . 10 (𝜑𝐾 ∈ CvLat)
3314atexlemp 35336 . . . . . . . . . 10 (𝜑𝑃𝐴)
3414atexlempnq 35341 . . . . . . . . . 10 (𝜑𝑃𝑄)
352, 3, 5cvlatexch2 34624 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑇𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3632, 33, 26, 25, 34, 35syl131anc 1339 . . . . . . . . 9 (𝜑 → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3736adantr 481 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3831, 37mpd 15 . . . . . . 7 ((𝜑𝐶 = 𝑃) → 𝑇 (𝑃 𝑄))
3938ex 450 . . . . . 6 (𝜑 → (𝐶 = 𝑃𝑇 (𝑃 𝑄)))
4039necon3bd 2808 . . . . 5 (𝜑 → (¬ 𝑇 (𝑃 𝑄) → 𝐶𝑃))
4114, 40mpd 15 . . . 4 (𝜑𝐶𝑃)
4241adantr 481 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑃)
43 simpr 477 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑆)
4421, 2, 4latmle2 17077 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
4518, 19, 20, 44syl3anc 1326 . . . . 5 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
469, 45syl5eqbr 4688 . . . 4 (𝜑𝐶 (𝑃 𝑆))
4746adantr 481 . . 3 ((𝜑𝐶𝑆) → 𝐶 (𝑃 𝑆))
4814atexlems 35338 . . . . 5 (𝜑𝑆𝐴)
491, 2, 3, 54atexlempns 35348 . . . . 5 (𝜑𝑃𝑆)
505, 2, 3cvlsupr2 34630 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝐶𝐴) ∧ 𝑃𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5132, 33, 48, 10, 49, 50syl131anc 1339 . . . 4 (𝜑 → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5251adantr 481 . . 3 ((𝜑𝐶𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5342, 43, 47, 52mpbir3and 1245 . 2 ((𝜑𝐶𝑆) → (𝑃 𝐶) = (𝑆 𝐶))
54 breq1 4656 . . . . 5 (𝑧 = 𝐶 → (𝑧 𝑊𝐶 𝑊))
5554notbid 308 . . . 4 (𝑧 = 𝐶 → (¬ 𝑧 𝑊 ↔ ¬ 𝐶 𝑊))
56 oveq2 6658 . . . . 5 (𝑧 = 𝐶 → (𝑃 𝑧) = (𝑃 𝐶))
57 oveq2 6658 . . . . 5 (𝑧 = 𝐶 → (𝑆 𝑧) = (𝑆 𝐶))
5856, 57eqeq12d 2637 . . . 4 (𝑧 = 𝐶 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝐶) = (𝑆 𝐶)))
5955, 58anbi12d 747 . . 3 (𝑧 = 𝐶 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))))
6059rspcev 3309 . 2 ((𝐶𝐴 ∧ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6111, 13, 53, 60syl12anc 1324 1 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Latclat 17045  Atomscatm 34550  CvLatclc 34552  HLchlt 34637  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lhyp 35274
This theorem is referenced by:  4atexlemex4  35359  4atexlemex6  35360
  Copyright terms: Public domain W3C validator