Proof of Theorem 4atexlemex2
Step | Hyp | Ref
| Expression |
1 | | 4thatlem.ph |
. . . 4
     
    
 
    

     
      |
2 | | 4thatlem0.l |
. . . 4
     |
3 | | 4thatlem0.j |
. . . 4
     |
4 | | 4thatlem0.m |
. . . 4
     |
5 | | 4thatlem0.a |
. . . 4
     |
6 | | 4thatlem0.h |
. . . 4
     |
7 | | 4thatlem0.u |
. . . 4
  
  |
8 | | 4thatlem0.v |
. . . 4
  
  |
9 | | 4thatlem0.c |
. . . 4
  
    |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 4atexlemc 35355 |
. . 3
   |
11 | 10 | adantr 481 |
. 2
 

  |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 4atexlemnclw 35356 |
. . 3
   |
13 | 12 | adantr 481 |
. 2
 

  |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemntlpq 35354 |
. . . . 5
     |
15 | | id 22 |
. . . . . . . . . . 11
   |
16 | 9, 15 | syl5eqr 2670 |
. . . . . . . . . 10
   
     |
17 | 16 | adantl 482 |
. . . . . . . . 9
 
   
     |
18 | 1 | 4atexlemkl 35343 |
. . . . . . . . . . . 12
   |
19 | 1, 3, 5 | 4atexlemqtb 35347 |
. . . . . . . . . . . 12
         |
20 | 1, 3, 5 | 4atexlempsb 35346 |
. . . . . . . . . . . 12
         |
21 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
22 | 21, 2, 4 | latmle1 17076 |
. . . . . . . . . . . 12
  
    
      
   
 
    |
23 | 18, 19, 20, 22 | syl3anc 1326 |
. . . . . . . . . . 11
   
   
   |
24 | 1 | 4atexlemk 35333 |
. . . . . . . . . . . 12
   |
25 | 1 | 4atexlemq 35337 |
. . . . . . . . . . . 12
   |
26 | 1 | 4atexlemt 35339 |
. . . . . . . . . . . 12
   |
27 | 3, 5 | hlatjcom 34654 |
. . . . . . . . . . . 12
 
       |
28 | 24, 25, 26, 27 | syl3anc 1326 |
. . . . . . . . . . 11
       |
29 | 23, 28 | breqtrd 4679 |
. . . . . . . . . 10
   
   
   |
30 | 29 | adantr 481 |
. . . . . . . . 9
 
   
   
   |
31 | 17, 30 | eqbrtrrd 4677 |
. . . . . . . 8
 
     |
32 | 1 | 4atexlemkc 35344 |
. . . . . . . . . 10
   |
33 | 1 | 4atexlemp 35336 |
. . . . . . . . . 10
   |
34 | 1 | 4atexlempnq 35341 |
. . . . . . . . . 10
   |
35 | 2, 3, 5 | cvlatexch2 34624 |
. . . . . . . . . 10
  


  
     |
36 | 32, 33, 26, 25, 34, 35 | syl131anc 1339 |
. . . . . . . . 9
         |
37 | 36 | adantr 481 |
. . . . . . . 8
 
   
     |
38 | 31, 37 | mpd 15 |
. . . . . . 7
 
     |
39 | 38 | ex 450 |
. . . . . 6
       |
40 | 39 | necon3bd 2808 |
. . . . 5
       |
41 | 14, 40 | mpd 15 |
. . . 4
   |
42 | 41 | adantr 481 |
. . 3
 

  |
43 | | simpr 477 |
. . 3
 

  |
44 | 21, 2, 4 | latmle2 17077 |
. . . . . 6
  
    
      
   
 
    |
45 | 18, 19, 20, 44 | syl3anc 1326 |
. . . . 5
   
   
   |
46 | 9, 45 | syl5eqbr 4688 |
. . . 4

    |
47 | 46 | adantr 481 |
. . 3
 

    |
48 | 1 | 4atexlems 35338 |
. . . . 5
   |
49 | 1, 2, 3, 5 | 4atexlempns 35348 |
. . . . 5
   |
50 | 5, 2, 3 | cvlsupr2 34630 |
. . . . 5
  


     
      |
51 | 32, 33, 48, 10, 49, 50 | syl131anc 1339 |
. . . 4
     

      |
52 | 51 | adantr 481 |
. . 3
 

     
      |
53 | 42, 43, 47, 52 | mpbir3and 1245 |
. 2
 

      |
54 | | breq1 4656 |
. . . . 5
 
   |
55 | 54 | notbid 308 |
. . . 4
 
   |
56 | | oveq2 6658 |
. . . . 5
       |
57 | | oveq2 6658 |
. . . . 5
       |
58 | 56, 57 | eqeq12d 2637 |
. . . 4
     
       |
59 | 55, 58 | anbi12d 747 |
. . 3
                 |
60 | 59 | rspcev 3309 |
. 2
  
     

        |
61 | 11, 13, 53, 60 | syl12anc 1324 |
1
 


        |