MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p2e8 Structured version   Visualization version   GIF version

Theorem 6p2e8 11169
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 11079 . . . . 5 2 = (1 + 1)
21oveq2i 6661 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 11102 . . . . 5 6 ∈ ℂ
4 ax-1cn 9994 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 10048 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2647 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 11084 . . . 4 7 = (6 + 1)
87oveq1i 6660 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2647 . 2 (6 + 2) = (7 + 1)
10 df-8 11085 . 2 8 = (7 + 1)
119, 10eqtr4i 2647 1 (6 + 2) = 8
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  (class class class)co 6650  1c1 9937   + caddc 9939  2c2 11070  6c6 11074  7c7 11075  8c8 11076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-addass 10001  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085
This theorem is referenced by:  6p3e9  11170  6t3e18  11642  83prm  15830  1259lem2  15839  1259lem5  15842  2503lem2  15845  2503lem3  15846  4001lem1  15848  log2ub  24676  hgt750lem2  30730  lhe4.4ex1a  38528  fmtno5faclem3  41493
  Copyright terms: Public domain W3C validator