MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 15848
Description: Lemma for 4001prm 15852. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 11311 . . . . . 6 4 ∈ ℕ0
3 0nn0 11307 . . . . . 6 0 ∈ ℕ0
42, 3deccl 11512 . . . . 5 40 ∈ ℕ0
54, 3deccl 11512 . . . 4 400 ∈ ℕ0
6 1nn 11031 . . . 4 1 ∈ ℕ
75, 6decnncl 11518 . . 3 4001 ∈ ℕ
81, 7eqeltri 2697 . 2 𝑁 ∈ ℕ
9 2nn 11185 . 2 2 ∈ ℕ
10 10nn0 11516 . . 3 10 ∈ ℕ0
1110, 3deccl 11512 . 2 100 ∈ ℕ0
12 9nn0 11316 . . . 4 9 ∈ ℕ0
1312, 2deccl 11512 . . 3 94 ∈ ℕ0
1413nn0zi 11402 . 2 94 ∈ ℤ
15 6nn0 11313 . . . 4 6 ∈ ℕ0
16 1nn0 11308 . . . 4 1 ∈ ℕ0
1715, 16deccl 11512 . . 3 61 ∈ ℕ0
1817, 2deccl 11512 . 2 614 ∈ ℕ0
1912, 3deccl 11512 . . 3 90 ∈ ℕ0
20 2nn0 11309 . . 3 2 ∈ ℕ0
2119, 20deccl 11512 . 2 902 ∈ ℕ0
22 5nn0 11312 . . . 4 5 ∈ ℕ0
2322, 3deccl 11512 . . 3 50 ∈ ℕ0
24 8nn0 11315 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 11512 . . . . 5 28 ∈ ℕ0
2625, 15deccl 11512 . . . 4 286 ∈ ℕ0
2726nn0zi 11402 . . 3 286 ∈ ℤ
28 7nn0 11314 . . . . 5 7 ∈ ℕ0
2910, 28deccl 11512 . . . 4 107 ∈ ℕ0
3029, 3deccl 11512 . . 3 1070 ∈ ℕ0
3120, 22deccl 11512 . . . 4 25 ∈ ℕ0
3210, 2deccl 11512 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 11512 . . . . 5 1046 ∈ ℕ0
3433nn0zi 11402 . . . 4 1046 ∈ ℤ
3520, 3deccl 11512 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 11512 . . . . 5 204 ∈ ℕ0
3736, 15deccl 11512 . . . 4 2046 ∈ ℕ0
3820, 2deccl 11512 . . . . 5 24 ∈ ℕ0
39 0z 11388 . . . . 5 0 ∈ ℤ
4010, 20deccl 11512 . . . . . 6 102 ∈ ℕ0
41 3nn0 11310 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 11512 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 11512 . . . . . 6 12 ∈ ℕ0
44 2z 11409 . . . . . 6 2 ∈ ℤ
4512, 22deccl 11512 . . . . . 6 95 ∈ ℕ0
46 1z 11407 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 11512 . . . . . . 7 64 ∈ ℕ0
48 2exp6 15795 . . . . . . . 8 (2↑6) = 64
4948oveq1i 6660 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 11102 . . . . . . . 8 6 ∈ ℂ
51 2cn 11091 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 11641 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 10047 . . . . . . 7 (2 · 6) = 12
54 eqid 2622 . . . . . . . . 9 95 = 95
55 eqid 2622 . . . . . . . . . 10 400 = 400
56 9cn 11108 . . . . . . . . . . . 12 9 ∈ ℂ
5756addid1i 10223 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 11522 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2644 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2622 . . . . . . . . . . 11 40 = 40
61 00id 10211 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 11522 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2644 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 11098 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mulid2i 10043 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 6662 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addid1i 10223 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2644 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 10226 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 6660 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2648 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 11568 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 6660 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addid2i 10224 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2648 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 11568 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulid1i 10042 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 6660 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 11100 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 11155 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 10228 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 11522 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2648 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 11568 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2622 . . . . . . . . 9 64 = 64
87 eqid 2622 . . . . . . . . . 10 25 = 25
88 2p2e4 11144 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 6661 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 11646 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 11153 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 11598 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 11581 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2644 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 11643 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 10047 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 11167 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 10228 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 11579 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 11566 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 11154 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 11535 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 11633 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 11587 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 11589 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2647 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 15773 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2622 . . . . . . 7 12 = 12
10951mulid1i 10042 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 6660 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addid1i 10223 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2644 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 11177 . . . . . . . 8 (2 · 2) = 4
1142dec0h 11522 . . . . . . . 8 4 = 04
115113, 114eqtri 2644 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 11589 . . . . . 6 (2 · 12) = 24
117 eqid 2622 . . . . . . . 8 1023 = 1023
11840nn0cni 11304 . . . . . . . . . 10 102 ∈ ℂ
119118addid1i 10223 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 11553 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 11181 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 10047 . . . . . . . . . . . 12 (2 · 4) = 8
12369addid1i 10223 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 6662 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 11158 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2644 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 10226 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 6660 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2648 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 11568 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 6660 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addid2i 10224 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 11522 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2648 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 11568 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 6660 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 11095 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 11160 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 10228 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 11522 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2648 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 11568 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 11512 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2622 . . . . . . . . 9 47 = 47
14598oveq2i 6661 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 11670 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 11496 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 10228 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 11581 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2644 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 11666 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 10047 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 11104 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 11607 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 10228 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 11580 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 11566 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 11165 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 11579 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 11639 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 11587 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 11589 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2647 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 15773 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2622 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 11535 . . . . 5 (24 + 1) = 25
16737nn0cni 11304 . . . . . . 7 2046 ∈ ℂ
168167addid2i 10224 . . . . . 6 (0 + 2046) = 2046
1698nncni 11030 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 10225 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 6660 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2622 . . . . . . . 8 102 = 102
17320dec0u 11520 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 2, 173, 113decmul1 11585 . . . . . . 7 (102 · 2) = 204
175 3t2e6 11179 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 15, 174, 175decmul1 11585 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2654 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 15774 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 6660 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2644 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 11634 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 10047 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 11589 . . . 4 (2 · 25) = 50
184 eqid 2622 . . . . . 6 1070 = 1070
18520, 16deccl 11512 . . . . . . 7 21 ∈ ℕ0
186 eqid 2622 . . . . . . . 8 107 = 107
187 eqid 2622 . . . . . . . 8 104 = 104
188 0p1e1 11132 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 11628 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 11535 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 11605 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 11572 . . . . . . 7 (107 + 104) = 211
193185nn0cni 11304 . . . . . . . . 9 21 ∈ ℂ
194193addid1i 10223 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2697 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2622 . . . . . . . . 9 1046 = 1046
197 dfdec10 11497 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2631 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 11169 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 11579 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 11577 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 6662 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 11162 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 11579 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2644 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 11577 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 11304 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 10226 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 6660 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 11522 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2648 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 11568 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 11568 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulid1i 10042 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 6660 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addid1i 10223 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2644 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 11568 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2622 . . . . . 6 2046 = 2046
22043, 20deccl 11512 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 11512 . . . . . 6 1227 ∈ ℕ0
222 eqid 2622 . . . . . . 7 204 = 204
223 eqid 2622 . . . . . . 7 1227 = 1227
22424, 16deccl 11512 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 11512 . . . . . . 7 819 ∈ ℕ0
226 eqid 2622 . . . . . . . 8 20 = 20
227 eqid 2622 . . . . . . . . 9 122 = 122
228 eqid 2622 . . . . . . . . 9 819 = 819
229 eqid 2622 . . . . . . . . . . 11 81 = 81
230 8cn 11106 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 10228 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 11151 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 11570 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 11535 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 11619 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 10228 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 11572 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 11304 . . . . . . . . . 10 94 ∈ ℂ
239238addid1i 10223 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2697 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 10225 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 6662 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2644 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 11576 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 6660 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addid1i 10223 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 11522 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2648 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 11566 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 10228 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 11579 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 11566 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 10226 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 6660 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2648 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 11568 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 11522 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2697 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 10225 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 6662 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2644 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 11576 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 11170 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 11579 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 11566 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 10228 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 11580 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 11577 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 11568 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 10225 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 6660 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2644 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 11576 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 11163 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 11579 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 11577 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 11587 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 11589 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2647 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 15773 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 11304 . . . 4 50 ∈ ℂ
282 eqid 2622 . . . . 5 50 = 50
28320, 22, 3, 282, 3, 181, 241decmul1 11585 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 10047 . . 3 (2 · 50) = 100
285 eqid 2622 . . . . 5 614 = 614
28620, 12deccl 11512 . . . . 5 29 ∈ ℕ0
287 eqid 2622 . . . . . . 7 61 = 61
288 eqid 2622 . . . . . . 7 29 = 29
289199oveq1i 6660 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2644 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 11575 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2697 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2622 . . . . . . . 8 286 = 286
294 eqid 2622 . . . . . . . . 9 28 = 28
295122oveq1i 6660 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 11612 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2644 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 11656 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 11579 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 11577 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 6662 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 11304 . . . . . . . . . 10 24 ∈ ℂ
303302addid1i 10223 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2644 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 11577 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 11304 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 10226 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 6660 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2648 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 11568 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 6660 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2648 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 11568 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulid1i 10042 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 24, 109, 314decmul1 11585 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 11535 . . . . . 6 ((28 · 1) + 1) = 29
31750mulid1i 10042 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 6660 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2644 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 11577 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 11568 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 11512 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 11512 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 11512 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 11512 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 11512 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 11512 . . . . . . 7 749 ∈ ℕ0
328 eqid 2622 . . . . . . . 8 10 = 10
329 eqid 2622 . . . . . . . 8 749 = 749
330326nn0cni 11304 . . . . . . . . . 10 74 ∈ ℂ
331330addid1i 10223 . . . . . . . . 9 (74 + 0) = 74
332153addid1i 10223 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2697 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 11304 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulid1i 10042 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 11535 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulid1i 10042 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 6662 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 11609 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2644 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 11577 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 10225 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 6660 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addid2i 10224 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2648 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 11566 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 11304 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 10226 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 6660 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2648 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 11568 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 11497 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2631 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 11653 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 11587 . . . . . . . 8 (107 · 7) = 749
356153mul02i 10225 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 3, 355, 356decmul1 11585 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 11589 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 11579 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2644 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 11589 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2647 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 15773 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 11304 . . 3 100 ∈ ℂ
365 eqid 2622 . . . 4 100 = 100
36620, 10, 3, 365, 3, 173, 241decmul1 11585 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 10047 . 2 (2 · 100) = 200
368 eqid 2622 . . . 4 902 = 902
369 eqid 2622 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 11579 . . . . 5 (90 + 9) = 99
371 eqid 2622 . . . . . . 7 94 = 94
372 6p1e7 11156 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 11665 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 11535 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 6662 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 11512 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 11304 . . . . . . . . 9 16 ∈ ℂ
378377addid1i 10223 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2644 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 11577 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 10226 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 6660 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2648 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 11568 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 11568 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulid1i 10042 . . . . 5 (9 · 1) = 9
38764mulid1i 10042 . . . . . . 7 (4 · 1) = 4
388387oveq1i 6660 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2644 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 11576 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 11568 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 11512 . . . 4 245 ∈ ℕ0
393 eqid 2622 . . . . 5 245 = 245
39450, 51, 199addcomli 10228 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 11570 . . . . . 6 (24 + 61) = 85
396 8p2e10 11610 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 11535 . . . . . . 7 ((6 · 6) + 1) = 37
39850mulid2i 10043 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 6660 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addid1i 10223 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2644 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 11564 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 11566 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 16, 317, 78decmul1 11585 . . . . . 6 (61 · 1) = 61
405387oveq1i 6660 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2644 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 11576 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 11568 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 6660 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2644 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 11576 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 11587 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 11589 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2647 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 15773 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  0cn0 11292  cdc 11493   mod cmo 12668  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  4001lem2  15849  4001lem3  15850
  Copyright terms: Public domain W3C validator