MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpnpcan Structured version   Visualization version   Unicode version

Theorem ablpnpcan 18225
Description: Cancellation law for mixed addition and subtraction. (pnpcan 10320 analog.) (Contributed by NM, 29-May-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
ablpnpcan.g  |-  ( ph  ->  G  e.  Abel )
ablpnpcan.x  |-  ( ph  ->  X  e.  B )
ablpnpcan.y  |-  ( ph  ->  Y  e.  B )
ablpnpcan.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablpnpcan  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )

Proof of Theorem ablpnpcan
StepHypRef Expression
1 ablsubsub.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablsubsub.x . . 3  |-  ( ph  ->  X  e.  B )
3 ablsubsub.y . . 3  |-  ( ph  ->  Y  e.  B )
4 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
5 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
7 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
85, 6, 7ablsub4 18218 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( X  .+  Z ) )  =  ( ( X  .-  X )  .+  ( Y  .-  Z ) ) )
91, 2, 3, 2, 4, 8syl122anc 1335 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( ( X 
.-  X )  .+  ( Y  .-  Z ) ) )
10 ablgrp 18198 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
111, 10syl 17 . . . 4  |-  ( ph  ->  G  e.  Grp )
12 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
135, 12, 7grpsubid 17499 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1411, 2, 13syl2anc 693 . . 3  |-  ( ph  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1514oveq1d 6665 . 2  |-  ( ph  ->  ( ( X  .-  X )  .+  ( Y  .-  Z ) )  =  ( ( 0g
`  G )  .+  ( Y  .-  Z ) ) )
165, 7grpsubcl 17495 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  e.  B )
1711, 3, 4, 16syl3anc 1326 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  e.  B )
185, 6, 12grplid 17452 . . 3  |-  ( ( G  e.  Grp  /\  ( Y  .-  Z )  e.  B )  -> 
( ( 0g `  G )  .+  ( Y  .-  Z ) )  =  ( Y  .-  Z ) )
1911, 17, 18syl2anc 693 . 2  |-  ( ph  ->  ( ( 0g `  G )  .+  ( Y  .-  Z ) )  =  ( Y  .-  Z ) )
209, 15, 193eqtrd 2660 1  |-  ( ph  ->  ( ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196
This theorem is referenced by:  hdmaprnlem7N  37147
  Copyright terms: Public domain W3C validator