MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Visualization version   GIF version

Theorem ac6c4 9303
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑧 𝐵 ≠ ∅
2 nfcsb1v 3549 . . . . 5 𝑥𝑧 / 𝑥𝐵
3 nfcv 2764 . . . . 5 𝑥
42, 3nfne 2894 . . . 4 𝑥𝑧 / 𝑥𝐵 ≠ ∅
5 csbeq1a 3542 . . . . 5 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65neeq1d 2853 . . . 4 (𝑥 = 𝑧 → (𝐵 ≠ ∅ ↔ 𝑧 / 𝑥𝐵 ≠ ∅))
71, 4, 6cbvral 3167 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅)
8 n0 3931 . . . . 5 (𝑧 / 𝑥𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝑧 / 𝑥𝐵)
9 nfv 1843 . . . . . 6 𝑦 𝑧𝐴
10 nfre1 3005 . . . . . 6 𝑦𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵
112nfel2 2781 . . . . . . . . . 10 𝑥 𝑦𝑧 / 𝑥𝐵
125eleq2d 2687 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝑧 / 𝑥𝐵))
1311, 12rspce 3304 . . . . . . . . 9 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑥𝐴 𝑦𝐵)
14 eliun 4524 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 224 . . . . . . . 8 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → 𝑦 𝑥𝐴 𝐵)
16 rspe 3003 . . . . . . . 8 ((𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1715, 16sylancom 701 . . . . . . 7 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1817ex 450 . . . . . 6 (𝑧𝐴 → (𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
199, 10, 18exlimd 2087 . . . . 5 (𝑧𝐴 → (∃𝑦 𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
208, 19syl5bi 232 . . . 4 (𝑧𝐴 → (𝑧 / 𝑥𝐵 ≠ ∅ → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
2120ralimia 2950 . . 3 (∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
227, 21sylbi 207 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
23 ac6c4.1 . . 3 𝐴 ∈ V
24 ac6c4.2 . . . 4 𝐵 ∈ V
2523, 24iunex 7147 . . 3 𝑥𝐴 𝐵 ∈ V
26 eleq1 2689 . . 3 (𝑦 = (𝑓𝑧) → (𝑦𝑧 / 𝑥𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
2723, 25, 26ac6 9302 . 2 (∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵 → ∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
28 ffn 6045 . . . 4 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 Fn 𝐴)
29 nfv 1843 . . . . . 6 𝑧(𝑓𝑥) ∈ 𝐵
302nfel2 2781 . . . . . 6 𝑥(𝑓𝑧) ∈ 𝑧 / 𝑥𝐵
31 fveq2 6191 . . . . . . 7 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
3231, 5eleq12d 2695 . . . . . 6 (𝑥 = 𝑧 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
3329, 30, 32cbvral 3167 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵)
3433biimpri 218 . . . 4 (∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
3528, 34anim12i 590 . . 3 ((𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3635eximi 1762 . 2 (∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3722, 27, 363syl 18 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  c0 3915   ciun 4520   Fn wfn 5883  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-en 7956  df-card 8765  df-ac 8939
This theorem is referenced by:  ac6c5  9304  ac9  9305
  Copyright terms: Public domain W3C validator