MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqf Structured version   Visualization version   GIF version

Theorem addpqf 9766
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpqf +pQ :((N × N) × (N × N))⟶(N × N)

Proof of Theorem addpqf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7198 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp2nd 7199 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
3 mulclpi 9715 . . . . . 6 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
41, 2, 3syl2an 494 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
5 xp1st 7198 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
6 xp2nd 7199 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
7 mulclpi 9715 . . . . . 6 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
85, 6, 7syl2anr 495 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
9 addclpi 9714 . . . . 5 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
104, 8, 9syl2anc 693 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
11 mulclpi 9715 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
126, 2, 11syl2an 494 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
13 opelxpi 5148 . . . 4 (((((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N ∧ ((2nd𝑥) ·N (2nd𝑦)) ∈ N) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1410, 12, 13syl2anc 693 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1514rgen2a 2977 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
16 df-plpq 9730 . . 3 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
1716fmpt2 7237 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N))
1815, 17mpbi 220 1 +pQ :((N × N) × (N × N))⟶(N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wcel 1990  wral 2912  cop 4183   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Ncnpi 9666   +N cpli 9667   ·N cmi 9668   +pQ cplpq 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-ni 9694  df-pli 9695  df-mi 9696  df-plpq 9730
This theorem is referenced by:  addclnq  9767  addnqf  9770  addcompq  9772  adderpq  9778  distrnq  9783
  Copyright terms: Public domain W3C validator