| Step | Hyp | Ref
| Expression |
| 1 | | pwexg 4850 |
. . . 4
⊢ (𝑌 ∈ 𝑉 → 𝒫 𝑌 ∈ V) |
| 2 | | elrest 16088 |
. . . 4
⊢
((𝒫 𝑌 ∈
V ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴))) |
| 3 | 1, 2 | sylan 488 |
. . 3
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴))) |
| 4 | | selpw 4165 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝑌 ↔ 𝑦 ⊆ 𝑌) |
| 5 | 4 | anbi1i 731 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ (𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 6 | 5 | exbii 1774 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 7 | | sstr2 3610 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑦 → (𝑦 ⊆ 𝑌 → 𝑥 ⊆ 𝑌)) |
| 8 | 7 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑌 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑌)) |
| 9 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑦 ∩ 𝐴) ⊆ 𝑦 |
| 10 | | sseq1 3626 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝑦 ↔ (𝑦 ∩ 𝐴) ⊆ 𝑦)) |
| 11 | 9, 10 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝑦) |
| 12 | 8, 11 | impel 485 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ 𝑌) |
| 13 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 |
| 14 | | sseq1 3626 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∩ 𝐴) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∩ 𝐴) ⊆ 𝐴)) |
| 15 | 13, 14 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ 𝐴) |
| 17 | 12, 16 | ssind 3837 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 18 | 17 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) → 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 19 | | inss1 3833 |
. . . . . . . 8
⊢ (𝑌 ∩ 𝐴) ⊆ 𝑌 |
| 20 | | sstr2 3610 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ((𝑌 ∩ 𝐴) ⊆ 𝑌 → 𝑥 ⊆ 𝑌)) |
| 21 | 19, 20 | mpi 20 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → 𝑥 ⊆ 𝑌) |
| 22 | | inss2 3834 |
. . . . . . . 8
⊢ (𝑌 ∩ 𝐴) ⊆ 𝐴 |
| 23 | | sstr2 3610 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ((𝑌 ∩ 𝐴) ⊆ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 24 | 22, 23 | mpi 20 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → 𝑥 ⊆ 𝐴) |
| 25 | | ssid 3624 |
. . . . . . . . . . 11
⊢ 𝑥 ⊆ 𝑥 |
| 26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝑥) |
| 27 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴) |
| 28 | 26, 27 | ssind 3837 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ⊆ (𝑥 ∩ 𝐴)) |
| 29 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝐴) ⊆ 𝑥) |
| 31 | 28, 30 | eqssd 3620 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝐴 → 𝑥 = (𝑥 ∩ 𝐴)) |
| 32 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 33 | | sseq1 3626 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑌 ↔ 𝑥 ⊆ 𝑌)) |
| 34 | | ineq1 3807 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑦 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 35 | 34 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 = (𝑥 ∩ 𝐴))) |
| 36 | 33, 35 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ (𝑥 ⊆ 𝑌 ∧ 𝑥 = (𝑥 ∩ 𝐴)))) |
| 37 | 32, 36 | spcev 3300 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑥 = (𝑥 ∩ 𝐴)) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 38 | 31, 37 | sylan2 491 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑥 ⊆ 𝐴) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 39 | 21, 24, 38 | syl2anc 693 |
. . . . . 6
⊢ (𝑥 ⊆ (𝑌 ∩ 𝐴) → ∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 40 | 18, 39 | impbii 199 |
. . . . 5
⊢
(∃𝑦(𝑦 ⊆ 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 41 | 6, 40 | bitri 264 |
. . . 4
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴)) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 42 | | df-rex 2918 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝑌 ∧ 𝑥 = (𝑦 ∩ 𝐴))) |
| 43 | | selpw 4165 |
. . . 4
⊢ (𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴) ↔ 𝑥 ⊆ (𝑌 ∩ 𝐴)) |
| 44 | 41, 42, 43 | 3bitr4i 292 |
. . 3
⊢
(∃𝑦 ∈
𝒫 𝑌𝑥 = (𝑦 ∩ 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴)) |
| 45 | 3, 44 | syl6bb 276 |
. 2
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝑌 ↾t 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌 ∩ 𝐴))) |
| 46 | 45 | eqrdv 2620 |
1
⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝒫 𝑌 ↾t 𝐴) = 𝒫 (𝑌 ∩ 𝐴)) |