Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restpw Structured version   Visualization version   GIF version

Theorem bj-restpw 33045
Description: The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis 20982 (which uses distop 20799 and restopn2 20981). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restpw ((𝑌𝑉𝐴𝑊) → (𝒫 𝑌t 𝐴) = 𝒫 (𝑌𝐴))

Proof of Theorem bj-restpw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . 4 (𝑌𝑉 → 𝒫 𝑌 ∈ V)
2 elrest 16088 . . . 4 ((𝒫 𝑌 ∈ V ∧ 𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
31, 2sylan 488 . . 3 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ ∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
4 selpw 4165 . . . . . . 7 (𝑦 ∈ 𝒫 𝑌𝑦𝑌)
54anbi1i 731 . . . . . 6 ((𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ (𝑦𝑌𝑥 = (𝑦𝐴)))
65exbii 1774 . . . . 5 (∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
7 sstr2 3610 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝑌𝑥𝑌))
87com12 32 . . . . . . . . 9 (𝑦𝑌 → (𝑥𝑦𝑥𝑌))
9 inss1 3833 . . . . . . . . . 10 (𝑦𝐴) ⊆ 𝑦
10 sseq1 3626 . . . . . . . . . 10 (𝑥 = (𝑦𝐴) → (𝑥𝑦 ↔ (𝑦𝐴) ⊆ 𝑦))
119, 10mpbiri 248 . . . . . . . . 9 (𝑥 = (𝑦𝐴) → 𝑥𝑦)
128, 11impel 485 . . . . . . . 8 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥𝑌)
13 inss2 3834 . . . . . . . . . 10 (𝑦𝐴) ⊆ 𝐴
14 sseq1 3626 . . . . . . . . . 10 (𝑥 = (𝑦𝐴) → (𝑥𝐴 ↔ (𝑦𝐴) ⊆ 𝐴))
1513, 14mpbiri 248 . . . . . . . . 9 (𝑥 = (𝑦𝐴) → 𝑥𝐴)
1615adantl 482 . . . . . . . 8 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥𝐴)
1712, 16ssind 3837 . . . . . . 7 ((𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥 ⊆ (𝑌𝐴))
1817exlimiv 1858 . . . . . 6 (∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)) → 𝑥 ⊆ (𝑌𝐴))
19 inss1 3833 . . . . . . . 8 (𝑌𝐴) ⊆ 𝑌
20 sstr2 3610 . . . . . . . 8 (𝑥 ⊆ (𝑌𝐴) → ((𝑌𝐴) ⊆ 𝑌𝑥𝑌))
2119, 20mpi 20 . . . . . . 7 (𝑥 ⊆ (𝑌𝐴) → 𝑥𝑌)
22 inss2 3834 . . . . . . . 8 (𝑌𝐴) ⊆ 𝐴
23 sstr2 3610 . . . . . . . 8 (𝑥 ⊆ (𝑌𝐴) → ((𝑌𝐴) ⊆ 𝐴𝑥𝐴))
2422, 23mpi 20 . . . . . . 7 (𝑥 ⊆ (𝑌𝐴) → 𝑥𝐴)
25 ssid 3624 . . . . . . . . . . 11 𝑥𝑥
2625a1i 11 . . . . . . . . . 10 (𝑥𝐴𝑥𝑥)
27 id 22 . . . . . . . . . 10 (𝑥𝐴𝑥𝐴)
2826, 27ssind 3837 . . . . . . . . 9 (𝑥𝐴𝑥 ⊆ (𝑥𝐴))
29 inss1 3833 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
3029a1i 11 . . . . . . . . 9 (𝑥𝐴 → (𝑥𝐴) ⊆ 𝑥)
3128, 30eqssd 3620 . . . . . . . 8 (𝑥𝐴𝑥 = (𝑥𝐴))
32 vex 3203 . . . . . . . . 9 𝑥 ∈ V
33 sseq1 3626 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝑌𝑥𝑌))
34 ineq1 3807 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐴) = (𝑥𝐴))
3534eqeq2d 2632 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑥 = (𝑦𝐴) ↔ 𝑥 = (𝑥𝐴)))
3633, 35anbi12d 747 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦𝑌𝑥 = (𝑦𝐴)) ↔ (𝑥𝑌𝑥 = (𝑥𝐴))))
3732, 36spcev 3300 . . . . . . . 8 ((𝑥𝑌𝑥 = (𝑥𝐴)) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
3831, 37sylan2 491 . . . . . . 7 ((𝑥𝑌𝑥𝐴) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
3921, 24, 38syl2anc 693 . . . . . 6 (𝑥 ⊆ (𝑌𝐴) → ∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)))
4018, 39impbii 199 . . . . 5 (∃𝑦(𝑦𝑌𝑥 = (𝑦𝐴)) ↔ 𝑥 ⊆ (𝑌𝐴))
416, 40bitri 264 . . . 4 (∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)) ↔ 𝑥 ⊆ (𝑌𝐴))
42 df-rex 2918 . . . 4 (∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴)))
43 selpw 4165 . . . 4 (𝑥 ∈ 𝒫 (𝑌𝐴) ↔ 𝑥 ⊆ (𝑌𝐴))
4441, 42, 433bitr4i 292 . . 3 (∃𝑦 ∈ 𝒫 𝑌𝑥 = (𝑦𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌𝐴))
453, 44syl6bb 276 . 2 ((𝑌𝑉𝐴𝑊) → (𝑥 ∈ (𝒫 𝑌t 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑌𝐴)))
4645eqrdv 2620 1 ((𝑌𝑉𝐴𝑊) → (𝒫 𝑌t 𝐴) = 𝒫 (𝑌𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  (class class class)co 6650  t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator