Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restpw Structured version   Visualization version   Unicode version

Theorem bj-restpw 33045
Description: The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis 20982 (which uses distop 20799 and restopn2 20981). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restpw  |-  ( ( Y  e.  V  /\  A  e.  W )  ->  ( ~P Yt  A )  =  ~P ( Y  i^i  A ) )

Proof of Theorem bj-restpw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . 4  |-  ( Y  e.  V  ->  ~P Y  e.  _V )
2 elrest 16088 . . . 4  |-  ( ( ~P Y  e.  _V  /\  A  e.  W )  ->  ( x  e.  ( ~P Yt  A )  <->  E. y  e.  ~P  Y x  =  (
y  i^i  A )
) )
31, 2sylan 488 . . 3  |-  ( ( Y  e.  V  /\  A  e.  W )  ->  ( x  e.  ( ~P Yt  A )  <->  E. y  e.  ~P  Y x  =  ( y  i^i  A
) ) )
4 selpw 4165 . . . . . . 7  |-  ( y  e.  ~P Y  <->  y  C_  Y )
54anbi1i 731 . . . . . 6  |-  ( ( y  e.  ~P Y  /\  x  =  (
y  i^i  A )
)  <->  ( y  C_  Y  /\  x  =  ( y  i^i  A ) ) )
65exbii 1774 . . . . 5  |-  ( E. y ( y  e. 
~P Y  /\  x  =  ( y  i^i 
A ) )  <->  E. y
( y  C_  Y  /\  x  =  (
y  i^i  A )
) )
7 sstr2 3610 . . . . . . . . . 10  |-  ( x 
C_  y  ->  (
y  C_  Y  ->  x 
C_  Y ) )
87com12 32 . . . . . . . . 9  |-  ( y 
C_  Y  ->  (
x  C_  y  ->  x 
C_  Y ) )
9 inss1 3833 . . . . . . . . . 10  |-  ( y  i^i  A )  C_  y
10 sseq1 3626 . . . . . . . . . 10  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  y  <->  ( y  i^i  A )  C_  y
) )
119, 10mpbiri 248 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  y )
128, 11impel 485 . . . . . . . 8  |-  ( ( y  C_  Y  /\  x  =  ( y  i^i  A ) )  ->  x  C_  Y )
13 inss2 3834 . . . . . . . . . 10  |-  ( y  i^i  A )  C_  A
14 sseq1 3626 . . . . . . . . . 10  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  A  <->  ( y  i^i  A )  C_  A
) )
1513, 14mpbiri 248 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  A )
1615adantl 482 . . . . . . . 8  |-  ( ( y  C_  Y  /\  x  =  ( y  i^i  A ) )  ->  x  C_  A )
1712, 16ssind 3837 . . . . . . 7  |-  ( ( y  C_  Y  /\  x  =  ( y  i^i  A ) )  ->  x  C_  ( Y  i^i  A ) )
1817exlimiv 1858 . . . . . 6  |-  ( E. y ( y  C_  Y  /\  x  =  ( y  i^i  A ) )  ->  x  C_  ( Y  i^i  A ) )
19 inss1 3833 . . . . . . . 8  |-  ( Y  i^i  A )  C_  Y
20 sstr2 3610 . . . . . . . 8  |-  ( x 
C_  ( Y  i^i  A )  ->  ( ( Y  i^i  A )  C_  Y  ->  x  C_  Y
) )
2119, 20mpi 20 . . . . . . 7  |-  ( x 
C_  ( Y  i^i  A )  ->  x  C_  Y
)
22 inss2 3834 . . . . . . . 8  |-  ( Y  i^i  A )  C_  A
23 sstr2 3610 . . . . . . . 8  |-  ( x 
C_  ( Y  i^i  A )  ->  ( ( Y  i^i  A )  C_  A  ->  x  C_  A
) )
2422, 23mpi 20 . . . . . . 7  |-  ( x 
C_  ( Y  i^i  A )  ->  x  C_  A
)
25 ssid 3624 . . . . . . . . . . 11  |-  x  C_  x
2625a1i 11 . . . . . . . . . 10  |-  ( x 
C_  A  ->  x  C_  x )
27 id 22 . . . . . . . . . 10  |-  ( x 
C_  A  ->  x  C_  A )
2826, 27ssind 3837 . . . . . . . . 9  |-  ( x 
C_  A  ->  x  C_  ( x  i^i  A
) )
29 inss1 3833 . . . . . . . . . 10  |-  ( x  i^i  A )  C_  x
3029a1i 11 . . . . . . . . 9  |-  ( x 
C_  A  ->  (
x  i^i  A )  C_  x )
3128, 30eqssd 3620 . . . . . . . 8  |-  ( x 
C_  A  ->  x  =  ( x  i^i 
A ) )
32 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
33 sseq1 3626 . . . . . . . . . 10  |-  ( y  =  x  ->  (
y  C_  Y  <->  x  C_  Y
) )
34 ineq1 3807 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  i^i  A )  =  ( x  i^i 
A ) )
3534eqeq2d 2632 . . . . . . . . . 10  |-  ( y  =  x  ->  (
x  =  ( y  i^i  A )  <->  x  =  ( x  i^i  A ) ) )
3633, 35anbi12d 747 . . . . . . . . 9  |-  ( y  =  x  ->  (
( y  C_  Y  /\  x  =  (
y  i^i  A )
)  <->  ( x  C_  Y  /\  x  =  ( x  i^i  A ) ) ) )
3732, 36spcev 3300 . . . . . . . 8  |-  ( ( x  C_  Y  /\  x  =  ( x  i^i  A ) )  ->  E. y ( y  C_  Y  /\  x  =  ( y  i^i  A ) ) )
3831, 37sylan2 491 . . . . . . 7  |-  ( ( x  C_  Y  /\  x  C_  A )  ->  E. y ( y  C_  Y  /\  x  =  ( y  i^i  A ) ) )
3921, 24, 38syl2anc 693 . . . . . 6  |-  ( x 
C_  ( Y  i^i  A )  ->  E. y
( y  C_  Y  /\  x  =  (
y  i^i  A )
) )
4018, 39impbii 199 . . . . 5  |-  ( E. y ( y  C_  Y  /\  x  =  ( y  i^i  A ) )  <->  x  C_  ( Y  i^i  A ) )
416, 40bitri 264 . . . 4  |-  ( E. y ( y  e. 
~P Y  /\  x  =  ( y  i^i 
A ) )  <->  x  C_  ( Y  i^i  A ) )
42 df-rex 2918 . . . 4  |-  ( E. y  e.  ~P  Y x  =  ( y  i^i  A )  <->  E. y
( y  e.  ~P Y  /\  x  =  ( y  i^i  A ) ) )
43 selpw 4165 . . . 4  |-  ( x  e.  ~P ( Y  i^i  A )  <->  x  C_  ( Y  i^i  A ) )
4441, 42, 433bitr4i 292 . . 3  |-  ( E. y  e.  ~P  Y x  =  ( y  i^i  A )  <->  x  e.  ~P ( Y  i^i  A
) )
453, 44syl6bb 276 . 2  |-  ( ( Y  e.  V  /\  A  e.  W )  ->  ( x  e.  ( ~P Yt  A )  <->  x  e.  ~P ( Y  i^i  A
) ) )
4645eqrdv 2620 1  |-  ( ( Y  e.  V  /\  A  e.  W )  ->  ( ~P Yt  A )  =  ~P ( Y  i^i  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158  (class class class)co 6650   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator