Step | Hyp | Ref
| Expression |
1 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
2 | 1 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑃 ∈ (𝑋 ∩ 𝑌) → 𝑃 ∈ 𝑌) |
3 | | blres.2 |
. . . . . . . . . . 11
⊢ 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)) |
4 | 3 | oveqi 6663 |
. . . . . . . . . 10
⊢ (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) |
5 | | ovres 6800 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥)) |
6 | 4, 5 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥)) |
7 | 2, 6 | sylan 488 |
. . . . . . . 8
⊢ ((𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑥 ∈ 𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥)) |
8 | 7 | breq1d 4663 |
. . . . . . 7
⊢ ((𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑥 ∈ 𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅)) |
9 | 8 | anbi2d 740 |
. . . . . 6
⊢ ((𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑥 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
10 | 9 | pm5.32da 673 |
. . . . 5
⊢ (𝑃 ∈ (𝑋 ∩ 𝑌) → ((𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))) |
11 | 10 | 3ad2ant2 1083 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))) |
12 | | elin 3796 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑋 ∩ 𝑌) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌)) |
13 | | ancom 466 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
14 | 12, 13 | bitri 264 |
. . . . . 6
⊢ (𝑥 ∈ (𝑋 ∩ 𝑌) ↔ (𝑥 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋)) |
15 | 14 | anbi1i 731 |
. . . . 5
⊢ ((𝑥 ∈ (𝑋 ∩ 𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) ∧ (𝑃𝐶𝑥) < 𝑅)) |
16 | | anass 681 |
. . . . 5
⊢ (((𝑥 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐶𝑥) < 𝑅))) |
17 | 15, 16 | bitri 264 |
. . . 4
⊢ ((𝑥 ∈ (𝑋 ∩ 𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐶𝑥) < 𝑅))) |
18 | | ancom 466 |
. . . 4
⊢ (((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥 ∈ 𝑌) ↔ (𝑥 ∈ 𝑌 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
19 | 11, 17, 18 | 3bitr4g 303 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋 ∩ 𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥 ∈ 𝑌))) |
20 | | xmetres 22169 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) |
21 | 3, 20 | syl5eqel 2705 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋 ∩ 𝑌))) |
22 | | elbl 22193 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘(𝑋 ∩ 𝑌)) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋 ∩ 𝑌) ∧ (𝑃𝐶𝑥) < 𝑅))) |
23 | 21, 22 | syl3an1 1359 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋 ∩ 𝑌) ∧ (𝑃𝐶𝑥) < 𝑅))) |
24 | | elin 3796 |
. . . 4
⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ 𝑌)) |
25 | | inss1 3833 |
. . . . . . 7
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
26 | 25 | sseli 3599 |
. . . . . 6
⊢ (𝑃 ∈ (𝑋 ∩ 𝑌) → 𝑃 ∈ 𝑋) |
27 | | elbl 22193 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
28 | 26, 27 | syl3an2 1360 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
29 | 28 | anbi1d 741 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ 𝑌) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥 ∈ 𝑌))) |
30 | 24, 29 | syl5bb 272 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥 ∈ 𝑌))) |
31 | 19, 23, 30 | 3bitr4d 300 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))) |
32 | 31 | eqrdv 2620 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)) |