| Step | Hyp | Ref
| Expression |
| 1 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑢 |
| 2 | | metrest.3 |
. . . . . . . . . . . . 13
⊢ 𝐽 = (MetOpen‘𝐶) |
| 3 | 2 | elmopn2 22250 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝐽 ↔ (𝑢 ⊆ 𝑋 ∧ ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))) |
| 4 | 3 | simplbda 654 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
| 5 | 4 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
| 6 | | ssralv 3666 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝑌) ⊆ 𝑢 → (∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)) |
| 7 | 1, 5, 6 | mpsyl 68 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
| 8 | | ssrin 3838 |
. . . . . . . . . . 11
⊢ ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
| 9 | 8 | reximi 3011 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
| 10 | 9 | ralimi 2952 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
| 11 | 7, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
| 12 | | inss2 3834 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑌 |
| 13 | 11, 12 | jctil 560 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
| 14 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ↔ (𝑢 ∩ 𝑌) ⊆ 𝑌)) |
| 15 | | sseq2 3627 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
| 16 | 15 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
| 17 | 16 | raleqbi1dv 3146 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
| 18 | 14, 17 | anbi12d 747 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∩ 𝑌) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)))) |
| 19 | 13, 18 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
| 20 | 19 | rexlimdva 3031 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
| 21 | 2 | mopntop 22245 |
. . . . . . . . 9
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 22 | 21 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top) |
| 23 | | ssel2 3598 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑌) |
| 24 | | ssel2 3598 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 25 | | rpxr 11840 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 26 | 2 | blopn 22305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽) |
| 27 | | eleq1a 2696 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 29 | 28 | 3expa 1265 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 30 | 25, 29 | sylan2 491 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 31 | 30 | rexlimdva 3031 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 32 | 24, 31 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 33 | 32 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 34 | 23, 33 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 35 | 34 | anassrs 680 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 36 | 35 | rexlimdva 3031 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
| 37 | 36 | adantrd 484 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
| 38 | 37 | adantrr 753 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
| 39 | 38 | abssdv 3676 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) |
| 40 | | uniopn 20702 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
| 41 | 22, 39, 40 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
| 42 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟)) |
| 43 | 42 | ineq1d 3813 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌)) |
| 44 | 43 | sseq1d 3632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 45 | 44 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 46 | 45 | rspccv 3306 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 47 | 46 | ad2antll 765 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 48 | | ssel 3597 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝑌 → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
| 49 | | ssel 3597 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ⊆ 𝑋 → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑋)) |
| 50 | | blcntr 22218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) |
| 51 | 50 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
| 52 | 51 | ancld 576 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 53 | 52 | 3expa 1265 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 54 | 53 | reximdva 3017 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 55 | 54 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
| 56 | 49, 55 | sylan9r 690 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑢 ∈ 𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
| 57 | 48, 56 | sylan9r 690 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
| 58 | 57 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
| 59 | 47, 58 | mpdd 43 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 60 | 42 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
| 61 | 44, 60 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 62 | 61 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
| 63 | 62 | rspcev 3309 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 64 | 63 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
| 65 | 59, 64 | sylcom 30 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
| 66 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 ⊆ 𝑌) |
| 67 | 66 | sseld 3602 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
| 68 | 65, 67 | jcad 555 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
| 69 | | elin 3796 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) |
| 70 | | ssel2 3598 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢 ∈ 𝑥) |
| 71 | 69, 70 | sylan2br 493 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) → 𝑢 ∈ 𝑥) |
| 72 | 71 | expr 643 |
. . . . . . . . . . . . 13
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
| 73 | 72 | rexlimivw 3029 |
. . . . . . . . . . . 12
⊢
(∃𝑟 ∈
ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
| 74 | 73 | rexlimivw 3029 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
| 75 | 74 | imp 445 |
. . . . . . . . . 10
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) → 𝑢 ∈ 𝑥) |
| 76 | 68, 75 | impbid1 215 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
| 77 | | elin 3796 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 ∈ ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌)) |
| 78 | | eluniab 4447 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥))) |
| 79 | | ancom 466 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧)) |
| 80 | | anass 681 |
. . . . . . . . . . . . . 14
⊢
(((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 81 | | r19.41v 3089 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
ℝ+ (𝑧 =
(𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 82 | 81 | rexbii 3041 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 83 | | r19.41v 3089 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 (∃𝑟 ∈ ℝ+
𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 84 | 82, 83 | bitr2i 265 |
. . . . . . . . . . . . . 14
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 85 | 79, 80, 84 | 3bitri 286 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 86 | 85 | exbii 1774 |
. . . . . . . . . . . 12
⊢
(∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 87 | | ovex 6678 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦(ball‘𝐶)𝑟) ∈ V |
| 88 | | ineq1 3807 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧 ∩ 𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
| 89 | 88 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧 ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 90 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 91 | 89, 90 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
| 92 | 87, 91 | ceqsexv 3242 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 93 | 92 | rexbii 3041 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑟 ∈
ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 94 | | rexcom4 3225 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑟 ∈
ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 95 | 93, 94 | bitr3i 266 |
. . . . . . . . . . . . . 14
⊢
(∃𝑟 ∈
ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 96 | 95 | rexbii 3041 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 97 | | rexcom4 3225 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
| 98 | 96, 97 | bitr2i 265 |
. . . . . . . . . . . 12
⊢
(∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 99 | 78, 86, 98 | 3bitri 286 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
| 100 | 99 | anbi1i 731 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌)) |
| 101 | 77, 100 | bitr2i 265 |
. . . . . . . . 9
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
| 102 | 76, 101 | syl6bb 276 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
| 103 | 102 | eqrdv 2620 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
| 104 | | ineq1 3807 |
. . . . . . . . 9
⊢ (𝑢 = ∪
{𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} → (𝑢 ∩ 𝑌) = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
| 105 | 104 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑢 = ∪
{𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} → (𝑥 = (𝑢 ∩ 𝑌) ↔ 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
| 106 | 105 | rspcev 3309 |
. . . . . . 7
⊢ ((∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽 ∧ 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
| 107 | 41, 103, 106 | syl2anc 693 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
| 108 | 107 | ex 450 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
| 109 | 20, 108 | impbid 202 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
| 110 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
| 111 | 24, 110 | elind 3798 |
. . . . . . . . . 10
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ (𝑋 ∩ 𝑌)) |
| 112 | | metrest.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) |
| 113 | 112 | blres 22236 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
| 114 | 113 | sseq1d 3632 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 115 | 114 | 3expa 1265 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 116 | 25, 115 | sylan2 491 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 117 | 116 | rexbidva 3049 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 118 | 111, 117 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 119 | 118 | anassrs 680 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 120 | 23, 119 | sylan2 491 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 121 | 120 | anassrs 680 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 122 | 121 | ralbidva 2985 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
| 123 | 122 | pm5.32da 673 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
| 124 | 109, 123 | bitr4d 271 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
| 125 | 21 | adantr 481 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 126 | | id 22 |
. . . . 5
⊢ (𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋) |
| 127 | 2 | mopnm 22249 |
. . . . 5
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
| 128 | | ssexg 4804 |
. . . . 5
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝑌 ∈ V) |
| 129 | 126, 127,
128 | syl2anr 495 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
| 130 | | elrest 16088 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
| 131 | 125, 129,
130 | syl2anc 693 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
| 132 | | xmetres2 22166 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 133 | 112, 132 | syl5eqel 2705 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝐷 ∈ (∞Met‘𝑌)) |
| 134 | | metrest.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
| 135 | 134 | elmopn2 22250 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
| 136 | 133, 135 | syl 17 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
| 137 | 124, 131,
136 | 3bitr4d 300 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ 𝑥 ∈ 𝐾)) |
| 138 | 137 | eqrdv 2620 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |