Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1125 Structured version   Visualization version   GIF version

Theorem bnj1125 31060
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1125 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))

Proof of Theorem bnj1125
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
2 bnj1127 31059 . . 3 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
323ad2ant3 1084 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑌𝐴)
4 bnj893 30998 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
543adant3 1081 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
6 bnj1029 31036 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
763adant3 1081 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
8 simp3 1063 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑌 ∈ trCl(𝑋, 𝐴, 𝑅))
9 elisset 3215 . . . . 5 (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑦 𝑦 = 𝑌)
1093ad2ant3 1084 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → ∃𝑦 𝑦 = 𝑌)
11 df-bnj19 30763 . . . . . . . 8 ( TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
12 rsp 2929 . . . . . . . 8 (∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1311, 12sylbi 207 . . . . . . 7 ( TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
147, 13syl 17 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
15 eleq1 2689 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ 𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)))
16 bnj602 30985 . . . . . . . 8 (𝑦 = 𝑌 → pred(𝑦, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))
1716sseq1d 3632 . . . . . . 7 (𝑦 = 𝑌 → ( pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1815, 17imbi12d 334 . . . . . 6 (𝑦 = 𝑌 → ((𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
1914, 18syl5ib 234 . . . . 5 (𝑦 = 𝑌 → ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2019exlimiv 1858 . . . 4 (∃𝑦 𝑦 = 𝑌 → ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2110, 20mpcom 38 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
228, 21mpd 15 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23 biid 251 . . 3 ((𝑅 FrSe 𝐴𝑌𝐴) ↔ (𝑅 FrSe 𝐴𝑌𝐴))
24 biid 251 . . 3 (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2523, 24bnj1124 31056 . 2 (((𝑅 FrSe 𝐴𝑌𝐴) ∧ ( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅) ∧ pred(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
261, 3, 5, 7, 22, 25syl23anc 1333 1 ((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  wss 3574   predc-bnj14 30754   FrSe w-bnj15 30758   trClc-bnj18 30760   TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1137  31063  bnj1136  31065  bnj1175  31072  bnj1408  31104  bnj1417  31109  bnj1452  31120
  Copyright terms: Public domain W3C validator