Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1137 Structured version   Visualization version   GIF version

Theorem bnj1137 31063
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1137.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1137 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem bnj1137
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 bnj1137.1 . . . . . 6 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
21eleq2i 2693 . . . . 5 (𝑣𝐵𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3 elun 3753 . . . . 5 (𝑣 ∈ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
42, 3bitri 264 . . . 4 (𝑣𝐵 ↔ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5 bnj213 30952 . . . . . . . . 9 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
65sseli 3599 . . . . . . . 8 (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑣𝐴)
7 bnj906 31000 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
87adantlr 751 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐴) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
96, 8sylan2 491 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
10 bnj906 31000 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
1110sselda 3603 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
12 bnj18eq1 30997 . . . . . . . . 9 (𝑦 = 𝑣 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑣, 𝐴, 𝑅))
1312ssiun2s 4564 . . . . . . . 8 (𝑣 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1411, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
159, 14sstrd 3613 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
16 bnj1147 31062 . . . . . . . . . . 11 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1716rgenw 2924 . . . . . . . . . 10 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
18 iunss 4561 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴 ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
1917, 18mpbir 221 . . . . . . . . 9 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2019sseli 3599 . . . . . . . 8 (𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → 𝑣𝐴)
2120, 8sylan2 491 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ trCl(𝑣, 𝐴, 𝑅))
22 bnj1125 31060 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
23223expia 1267 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2423ralrimiv 2965 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
25 iunss 4561 . . . . . . . . . 10 ( 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2624, 25sylibr 224 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
2726sselda 3603 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑣 ∈ trCl(𝑋, 𝐴, 𝑅))
2827, 13syl 17 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
2921, 28sstrd 3613 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3015, 29jaodan 826 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
31 ssun2 3777 . . . . . 6 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3231, 1sseqtr4i 3638 . . . . 5 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵
3330, 32syl6ss 3615 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝑣 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑣 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
344, 33sylan2b 492 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑣𝐵) → pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3534ralrimiva 2966 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
36 df-bnj19 30763 . 2 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑣𝐵 pred(𝑣, 𝐴, 𝑅) ⊆ 𝐵)
3735, 36sylibr 224 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  cun 3572  wss 3574   ciun 4520   predc-bnj14 30754   FrSe w-bnj15 30758   trClc-bnj18 30760   TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1136  31065
  Copyright terms: Public domain W3C validator