![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bralnfn | Structured version Visualization version GIF version |
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bralnfn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brafn 28806 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | |
2 | simpll 790 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝐴 ∈ ℋ) | |
3 | hvmulcl 27870 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ℎ 𝑦) ∈ ℋ) | |
4 | 3 | ad2ant2lr 784 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (𝑥 ·ℎ 𝑦) ∈ ℋ) |
5 | simprr 796 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ) | |
6 | braadd 28804 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (𝑥 ·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) | |
7 | 2, 4, 5, 6 | syl3anc 1326 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧))) |
8 | bramul 28805 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) | |
9 | 8 | 3expa 1265 | . . . . . . 7 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
10 | 9 | adantrr 753 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) = (𝑥 · ((bra‘𝐴)‘𝑦))) |
11 | 10 | oveq1d 6665 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → (((bra‘𝐴)‘(𝑥 ·ℎ 𝑦)) + ((bra‘𝐴)‘𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
12 | 7, 11 | eqtrd 2656 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) → ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
13 | 12 | ralrimivva 2971 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
14 | 13 | ralrimiva 2966 | . 2 ⊢ (𝐴 ∈ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧))) |
15 | ellnfn 28742 | . 2 ⊢ ((bra‘𝐴) ∈ LinFn ↔ ((bra‘𝐴): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((bra‘𝐴)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · ((bra‘𝐴)‘𝑦)) + ((bra‘𝐴)‘𝑧)))) | |
16 | 1, 14, 15 | sylanbrc 698 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 + caddc 9939 · cmul 9941 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 LinFnclf 27811 bracbr 27813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-hilex 27856 ax-hfvadd 27857 ax-hfvmul 27862 ax-hfi 27936 ax-his2 27940 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-lnfn 28707 df-bra 28709 |
This theorem is referenced by: rnbra 28966 kbass4 28978 |
Copyright terms: Public domain | W3C validator |