HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bralnfn Structured version   Visualization version   Unicode version

Theorem bralnfn 28807
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
bralnfn  |-  ( A  e.  ~H  ->  ( bra `  A )  e. 
LinFn )

Proof of Theorem bralnfn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brafn 28806 . 2  |-  ( A  e.  ~H  ->  ( bra `  A ) : ~H --> CC )
2 simpll 790 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  A  e.  ~H )
3 hvmulcl 27870 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
43ad2ant2lr 784 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  (
x  .h  y )  e.  ~H )
5 simprr 796 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  z  e.  ~H )
6 braadd 28804 . . . . . 6  |-  ( ( A  e.  ~H  /\  ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( bra `  A
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( ( bra `  A ) `
 ( x  .h  y ) )  +  ( ( bra `  A
) `  z )
) )
72, 4, 5, 6syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  (
( bra `  A
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( ( bra `  A ) `
 ( x  .h  y ) )  +  ( ( bra `  A
) `  z )
) )
8 bramul 28805 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  x  e.  CC  /\  y  e.  ~H )  ->  (
( bra `  A
) `  ( x  .h  y ) )  =  ( x  x.  (
( bra `  A
) `  y )
) )
983expa 1265 . . . . . . 7  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  y  e.  ~H )  ->  ( ( bra `  A ) `  (
x  .h  y ) )  =  ( x  x.  ( ( bra `  A ) `  y
) ) )
109adantrr 753 . . . . . 6  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  (
( bra `  A
) `  ( x  .h  y ) )  =  ( x  x.  (
( bra `  A
) `  y )
) )
1110oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  (
( ( bra `  A
) `  ( x  .h  y ) )  +  ( ( bra `  A
) `  z )
)  =  ( ( x  x.  ( ( bra `  A ) `
 y ) )  +  ( ( bra `  A ) `  z
) ) )
127, 11eqtrd 2656 . . . 4  |-  ( ( ( A  e.  ~H  /\  x  e.  CC )  /\  ( y  e. 
~H  /\  z  e.  ~H ) )  ->  (
( bra `  A
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( bra `  A ) `  y
) )  +  ( ( bra `  A
) `  z )
) )
1312ralrimivva 2971 . . 3  |-  ( ( A  e.  ~H  /\  x  e.  CC )  ->  A. y  e.  ~H  A. z  e.  ~H  (
( bra `  A
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( bra `  A ) `  y
) )  +  ( ( bra `  A
) `  z )
) )
1413ralrimiva 2966 . 2  |-  ( A  e.  ~H  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( bra `  A
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( bra `  A ) `  y
) )  +  ( ( bra `  A
) `  z )
) )
15 ellnfn 28742 . 2  |-  ( ( bra `  A )  e.  LinFn 
<->  ( ( bra `  A
) : ~H --> CC  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( bra `  A ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  x.  ( ( bra `  A ) `
 y ) )  +  ( ( bra `  A ) `  z
) ) ) )
161, 14, 15sylanbrc 698 1  |-  ( A  e.  ~H  ->  ( bra `  A )  e. 
LinFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941   ~Hchil 27776    +h cva 27777    .h csm 27778   LinFnclf 27811   bracbr 27813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-hilex 27856  ax-hfvadd 27857  ax-hfvmul 27862  ax-hfi 27936  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lnfn 28707  df-bra 28709
This theorem is referenced by:  rnbra  28966  kbass4  28978
  Copyright terms: Public domain W3C validator