MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcic Structured version   Visualization version   GIF version

Theorem brcic 16458
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
Assertion
Ref Expression
brcic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))

Proof of Theorem brcic
StepHypRef Expression
1 cic.c . . . 4 (𝜑𝐶 ∈ Cat)
2 cicfval 16457 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
31, 2syl 17 . . 3 (𝜑 → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
43breqd 4664 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌𝑋((Iso‘𝐶) supp ∅)𝑌))
5 df-br 4654 . . 3 (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅))
65a1i 11 . 2 (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
7 cic.i . . . . . 6 𝐼 = (Iso‘𝐶)
87a1i 11 . . . . 5 (𝜑𝐼 = (Iso‘𝐶))
98fveq1d 6193 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝑌⟩) = ((Iso‘𝐶)‘⟨𝑋, 𝑌⟩))
109neeq1d 2853 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅))
11 df-ov 6653 . . . . . 6 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
1211eqcomi 2631 . . . . 5 (𝐼‘⟨𝑋, 𝑌⟩) = (𝑋𝐼𝑌)
1312a1i 11 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝑌⟩) = (𝑋𝐼𝑌))
1413neeq1d 2853 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅))
15 fvexd 6203 . . . . 5 (𝜑 → (Base‘𝐶) ∈ V)
16 sqxpexg 6963 . . . . 5 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1715, 16syl 17 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
18 cic.x . . . . . 6 (𝜑𝑋𝐵)
19 cic.b . . . . . 6 𝐵 = (Base‘𝐶)
2018, 19syl6eleq 2711 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
21 cic.y . . . . . 6 (𝜑𝑌𝐵)
2221, 19syl6eleq 2711 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
23 opelxp 5146 . . . . 5 (⟨𝑋, 𝑌⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
2420, 22, 23sylanbrc 698 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)))
25 isofn 16435 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
261, 25syl 17 . . . 4 (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
27 fvn0elsuppb 7312 . . . 4 ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ⟨𝑋, 𝑌⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
2817, 24, 26, 27syl3anc 1326 . . 3 (𝜑 → (((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
2910, 14, 283bitr3rd 299 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅))
304, 6, 293bitrd 294 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  c0 3915  cop 4183   class class class wbr 4653   × cxp 5112   Fn wfn 5883  cfv 5888  (class class class)co 6650   supp csupp 7295  Basecbs 15857  Catccat 16325  Isociso 16406  𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  cic  16459
  Copyright terms: Public domain W3C validator