MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cic Structured version   Visualization version   GIF version

Theorem cic 16459
Description: Objects 𝑋 and 𝑌 in a category are isomorphic provided that there is an isomorphism 𝑓:𝑋𝑌, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)

Proof of Theorem cic
StepHypRef Expression
1 cic.i . . 3 𝐼 = (Iso‘𝐶)
2 cic.b . . 3 𝐵 = (Base‘𝐶)
3 cic.c . . 3 (𝜑𝐶 ∈ Cat)
4 cic.x . . 3 (𝜑𝑋𝐵)
5 cic.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5brcic 16458 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))
7 n0 3931 . 2 ((𝑋𝐼𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))
86, 7syl6bb 276 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wex 1704  wcel 1990  wne 2794  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  Catccat 16325  Isociso 16406  𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  brcici  16460  cicsym  16464  cictr  16465  initoeu1w  16662  initoeu2  16666  termoeu1w  16669  nzerooringczr  42072
  Copyright terms: Public domain W3C validator