MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   GIF version

Theorem erinxp 7821
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . 4 (𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
2 relxp 5227 . . . 4 Rel (𝐵 × 𝐵)
3 relss 5206 . . . 4 ((𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel (𝑅 ∩ (𝐵 × 𝐵))))
41, 2, 3mp2 9 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
54a1i 11 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
6 simpr 477 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
7 brinxp2 5180 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ (𝑥𝐵𝑦𝐵𝑥𝑅𝑦))
86, 7sylib 208 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → (𝑥𝐵𝑦𝐵𝑥𝑅𝑦))
98simp2d 1074 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
108simp1d 1073 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
11 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
1211adantr 481 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
138simp3d 1075 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
1412, 13ersym 7754 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
15 brinxp2 5180 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑦𝐵𝑥𝐵𝑦𝑅𝑥))
169, 10, 14, 15syl3anbrc 1246 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
1710adantrr 753 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
18 simprr 796 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
19 brinxp2 5180 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑦𝐵𝑧𝐵𝑦𝑅𝑧))
2018, 19sylib 208 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → (𝑦𝐵𝑧𝐵𝑦𝑅𝑧))
2120simp2d 1074 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
2211adantr 481 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2313adantrr 753 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2420simp3d 1075 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2522, 23, 24ertrd 7758 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
26 brinxp2 5180 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑥𝐵𝑧𝐵𝑥𝑅𝑧))
2717, 21, 25, 26syl3anbrc 1246 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
2811adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
29 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
3029sselda 3603 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
3128, 30erref 7762 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
3231ex 450 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3332pm4.71rd 667 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
34 brin 4704 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
35 brxp 5147 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
36 anidm 676 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3735, 36bitri 264 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3837anbi2i 730 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3934, 38bitri 264 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
4033, 39syl6bbr 278 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
415, 16, 27, 40iserd 7768 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  Rel wrel 5119   Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by:  frgpuplem  18185  pi1buni  22840  pi1addf  22847  pi1addval  22848  pi1grplem  22849
  Copyright terms: Public domain W3C validator