| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2.4 |
. . . . 5
⊢ 𝑋 = ∪
dom 𝑊 |
| 2 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 3 | 2 | eldm 5321 |
. . . . . . . 8
⊢ (𝑎 ∈ dom 𝑊 ↔ ∃𝑠 𝑎𝑊𝑠) |
| 4 | | fpwwe2.1 |
. . . . . . . . . . . . . 14
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 5 | | fpwwe2.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ V) |
| 6 | 4, 5 | fpwwe2lem2 9454 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑎𝑊𝑠 ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑦 ∈ 𝑎 [(◡𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 7 | 6 | simprbda 653 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎))) |
| 8 | 7 | simpld 475 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎 ⊆ 𝐴) |
| 9 | | selpw 4165 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴) |
| 10 | 8, 9 | sylibr 224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎 ∈ 𝒫 𝐴) |
| 11 | 10 | ex 450 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎𝑊𝑠 → 𝑎 ∈ 𝒫 𝐴)) |
| 12 | 11 | exlimdv 1861 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑠 𝑎𝑊𝑠 → 𝑎 ∈ 𝒫 𝐴)) |
| 13 | 3, 12 | syl5bi 232 |
. . . . . . 7
⊢ (𝜑 → (𝑎 ∈ dom 𝑊 → 𝑎 ∈ 𝒫 𝐴)) |
| 14 | 13 | ssrdv 3609 |
. . . . . 6
⊢ (𝜑 → dom 𝑊 ⊆ 𝒫 𝐴) |
| 15 | | sspwuni 4611 |
. . . . . 6
⊢ (dom
𝑊 ⊆ 𝒫 𝐴 ↔ ∪ dom 𝑊 ⊆ 𝐴) |
| 16 | 14, 15 | sylib 208 |
. . . . 5
⊢ (𝜑 → ∪ dom 𝑊 ⊆ 𝐴) |
| 17 | 1, 16 | syl5eqss 3649 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 18 | | vex 3203 |
. . . . . . . 8
⊢ 𝑠 ∈ V |
| 19 | 18 | elrn 5366 |
. . . . . . 7
⊢ (𝑠 ∈ ran 𝑊 ↔ ∃𝑎 𝑎𝑊𝑠) |
| 20 | 7 | simprd 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑠 ⊆ (𝑎 × 𝑎)) |
| 21 | 4 | relopabi 5245 |
. . . . . . . . . . . . . . . 16
⊢ Rel 𝑊 |
| 22 | 21 | releldmi 5362 |
. . . . . . . . . . . . . . 15
⊢ (𝑎𝑊𝑠 → 𝑎 ∈ dom 𝑊) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎 ∈ dom 𝑊) |
| 24 | | elssuni 4467 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ dom 𝑊 → 𝑎 ⊆ ∪ dom
𝑊) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎 ⊆ ∪ dom
𝑊) |
| 26 | 25, 1 | syl6sseqr 3652 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎 ⊆ 𝑋) |
| 27 | | xpss12 5225 |
. . . . . . . . . . . 12
⊢ ((𝑎 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑋) → (𝑎 × 𝑎) ⊆ (𝑋 × 𝑋)) |
| 28 | 26, 26, 27 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → (𝑎 × 𝑎) ⊆ (𝑋 × 𝑋)) |
| 29 | 20, 28 | sstrd 3613 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋)) |
| 30 | | selpw 4165 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋)) |
| 31 | 29, 30 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑠 ∈ 𝒫 (𝑋 × 𝑋)) |
| 32 | 31 | ex 450 |
. . . . . . . 8
⊢ (𝜑 → (𝑎𝑊𝑠 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
| 33 | 32 | exlimdv 1861 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 𝑎𝑊𝑠 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
| 34 | 19, 33 | syl5bi 232 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
| 35 | 34 | ssrdv 3609 |
. . . . 5
⊢ (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 36 | | sspwuni 4611 |
. . . . 5
⊢ (ran
𝑊 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∪ ran
𝑊 ⊆ (𝑋 × 𝑋)) |
| 37 | 35, 36 | sylib 208 |
. . . 4
⊢ (𝜑 → ∪ ran 𝑊 ⊆ (𝑋 × 𝑋)) |
| 38 | 17, 37 | jca 554 |
. . 3
⊢ (𝜑 → (𝑋 ⊆ 𝐴 ∧ ∪ ran
𝑊 ⊆ (𝑋 × 𝑋))) |
| 39 | | n0 3931 |
. . . . . . . . 9
⊢ (𝑛 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑛) |
| 40 | | ssel2 3598 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛) → 𝑦 ∈ 𝑋) |
| 41 | 40 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → 𝑦 ∈ 𝑋) |
| 42 | 1 | eleq2i 2693 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ dom
𝑊) |
| 43 | | eluni2 4440 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ∪ dom 𝑊 ↔ ∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎) |
| 44 | 42, 43 | bitri 264 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑋 ↔ ∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎) |
| 45 | 41, 44 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → ∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎) |
| 46 | 2 | inex2 4800 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∩ 𝑎) ∈ V |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑛 ∩ 𝑎) ∈ V) |
| 48 | 6 | simplbda 654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → (𝑠 We 𝑎 ∧ ∀𝑦 ∈ 𝑎 [(◡𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 49 | 48 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑠 We 𝑎) |
| 50 | 49 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑠 We 𝑎) |
| 51 | | wefr 5104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 We 𝑎 → 𝑠 Fr 𝑎) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑠 Fr 𝑎) |
| 53 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∩ 𝑎) ⊆ 𝑎 |
| 54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑛 ∩ 𝑎) ⊆ 𝑎) |
| 55 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑦 ∈ 𝑛) |
| 56 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑦 ∈ 𝑎) |
| 57 | | inelcm 4032 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑦 ∈ 𝑎) → (𝑛 ∩ 𝑎) ≠ ∅) |
| 58 | 55, 56, 57 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑛 ∩ 𝑎) ≠ ∅) |
| 59 | | fri 5076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∩ 𝑎) ∈ V ∧ 𝑠 Fr 𝑎) ∧ ((𝑛 ∩ 𝑎) ⊆ 𝑎 ∧ (𝑛 ∩ 𝑎) ≠ ∅)) → ∃𝑣 ∈ (𝑛 ∩ 𝑎)∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣) |
| 60 | 47, 52, 54, 58, 59 | syl22anc 1327 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ∃𝑣 ∈ (𝑛 ∩ 𝑎)∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣) |
| 61 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∩ 𝑎) ⊆ 𝑛 |
| 62 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) → 𝑣 ∈ (𝑛 ∩ 𝑎)) |
| 63 | 61, 62 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) → 𝑣 ∈ 𝑛) |
| 64 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣) |
| 65 | | ralnex 2992 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
(𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣 ↔ ¬ ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 66 | 64, 65 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → ¬ ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 67 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤∪ ran
𝑊 𝑣 ↔ 〈𝑤, 𝑣〉 ∈ ∪
ran 𝑊) |
| 68 | | eluni2 4440 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑤, 𝑣〉 ∈ ∪ ran 𝑊 ↔ ∃𝑡 ∈ ran 𝑊〈𝑤, 𝑣〉 ∈ 𝑡) |
| 69 | 67, 68 | bitri 264 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤∪ ran
𝑊 𝑣 ↔ ∃𝑡 ∈ ran 𝑊〈𝑤, 𝑣〉 ∈ 𝑡) |
| 70 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑡 ∈ V |
| 71 | 70 | elrn 5366 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ ran 𝑊 ↔ ∃𝑏 𝑏𝑊𝑡) |
| 72 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤𝑡𝑣 ↔ 〈𝑤, 𝑣〉 ∈ 𝑡) |
| 73 | | simprll 802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑤 ∈ 𝑛) |
| 74 | 73 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ 𝑛) |
| 75 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑤𝑡𝑣) |
| 76 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝜑) |
| 77 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑎𝑊𝑠) |
| 78 | 77 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑎𝑊𝑠) |
| 79 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑏𝑊𝑡) |
| 80 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑏𝑊𝑡) |
| 81 | 4, 5 | fpwwe2lem2 9454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝜑 → (𝑏𝑊𝑡 ↔ ((𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑏 × 𝑏)) ∧ (𝑡 We 𝑏 ∧ ∀𝑦 ∈ 𝑏 [(◡𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 82 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → (𝑏𝑊𝑡 ↔ ((𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑏 × 𝑏)) ∧ (𝑡 We 𝑏 ∧ ∀𝑦 ∈ 𝑏 [(◡𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 83 | 80, 82 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → ((𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑏 × 𝑏)) ∧ (𝑡 We 𝑏 ∧ ∀𝑦 ∈ 𝑏 [(◡𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 84 | 83 | simpld 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → (𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑏 × 𝑏))) |
| 85 | 84 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑡 ⊆ (𝑏 × 𝑏)) |
| 86 | 76, 78, 79, 85 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑡 ⊆ (𝑏 × 𝑏)) |
| 87 | 86 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → (𝑤𝑡𝑣 → 𝑤(𝑏 × 𝑏)𝑣)) |
| 88 | 75, 87 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑤(𝑏 × 𝑏)𝑣) |
| 89 | | brxp 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑤(𝑏 × 𝑏)𝑣 ↔ (𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑏)) |
| 90 | 89 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑤(𝑏 × 𝑏)𝑣 → 𝑤 ∈ 𝑏) |
| 91 | 88, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑤 ∈ 𝑏) |
| 92 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ 𝑏) |
| 93 | 53, 62 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) → 𝑣 ∈ 𝑎) |
| 94 | 93 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑣 ∈ 𝑎) |
| 95 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤𝑡𝑣) |
| 96 | | brinxp2 5180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑤(𝑡 ∩ (𝑏 × 𝑎))𝑣 ↔ (𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑎 ∧ 𝑤𝑡𝑣)) |
| 97 | 92, 94, 95, 96 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤(𝑡 ∩ (𝑏 × 𝑎))𝑣) |
| 98 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) |
| 99 | 98 | breqd 4664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑤𝑠𝑣 ↔ 𝑤(𝑡 ∩ (𝑏 × 𝑎))𝑣)) |
| 100 | 97, 99 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤𝑠𝑣) |
| 101 | 76, 78, 20 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → 𝑠 ⊆ (𝑎 × 𝑎)) |
| 102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑠 ⊆ (𝑎 × 𝑎)) |
| 103 | 102 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑤𝑠𝑣 → 𝑤(𝑎 × 𝑎)𝑣)) |
| 104 | 100, 103 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤(𝑎 × 𝑎)𝑣) |
| 105 | | brxp 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤(𝑎 × 𝑎)𝑣 ↔ (𝑤 ∈ 𝑎 ∧ 𝑣 ∈ 𝑎)) |
| 106 | 105 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑤(𝑎 × 𝑎)𝑣 → 𝑤 ∈ 𝑎) |
| 107 | 104, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ 𝑎) |
| 108 | 74, 107 | elind 3798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ (𝑛 ∩ 𝑎)) |
| 109 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑤 → (𝑧𝑠𝑣 ↔ 𝑤𝑠𝑣)) |
| 110 | 109 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑤 ∈ (𝑛 ∩ 𝑎) ∧ 𝑤𝑠𝑣) → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 111 | 108, 100,
110 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 112 | 73 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ 𝑛) |
| 113 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑏 ⊆ 𝑎) |
| 114 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ 𝑏) |
| 115 | 113, 114 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ 𝑎) |
| 116 | 112, 115 | elind 3798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ (𝑛 ∩ 𝑎)) |
| 117 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤𝑡𝑣) |
| 118 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))) |
| 119 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑠 ∩ (𝑎 × 𝑏)) ⊆ 𝑠 |
| 120 | 118, 119 | syl6eqss 3655 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑡 ⊆ 𝑠) |
| 121 | 120 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑤𝑡𝑣 → 𝑤𝑠𝑣)) |
| 122 | 117, 121 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤𝑠𝑣) |
| 123 | 116, 122,
110 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 124 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝐴 ∈ V) |
| 125 | | fpwwe2.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 126 | 125 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 127 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑎𝑊𝑠) |
| 128 | 4, 124, 126, 127, 80 | fpwwe2lem10 9461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → ((𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) ∨ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))))) |
| 129 | 76, 78, 79, 128 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → ((𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) ∨ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))))) |
| 130 | 111, 123,
129 | mpjaodan 827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ ((𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡) ∧ 𝑤𝑡𝑣)) → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣) |
| 131 | 130 | expr 643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ (𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡)) → (𝑤𝑡𝑣 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣)) |
| 132 | 72, 131 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ (𝑤 ∈ 𝑛 ∧ 𝑏𝑊𝑡)) → (〈𝑤, 𝑣〉 ∈ 𝑡 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣)) |
| 133 | 132 | expr 643 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → (𝑏𝑊𝑡 → (〈𝑤, 𝑣〉 ∈ 𝑡 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣))) |
| 134 | 133 | exlimdv 1861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → (∃𝑏 𝑏𝑊𝑡 → (〈𝑤, 𝑣〉 ∈ 𝑡 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣))) |
| 135 | 71, 134 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → (𝑡 ∈ ran 𝑊 → (〈𝑤, 𝑣〉 ∈ 𝑡 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣))) |
| 136 | 135 | rexlimdv 3030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → (∃𝑡 ∈ ran 𝑊〈𝑤, 𝑣〉 ∈ 𝑡 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣)) |
| 137 | 69, 136 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → (𝑤∪ ran 𝑊 𝑣 → ∃𝑧 ∈ (𝑛 ∩ 𝑎)𝑧𝑠𝑣)) |
| 138 | 66, 137 | mtod 189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) ∧ 𝑤 ∈ 𝑛) → ¬ 𝑤∪ ran 𝑊 𝑣) |
| 139 | 138 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) → ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣) |
| 140 | 63, 139 | jca 554 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣)) → (𝑣 ∈ 𝑛 ∧ ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 141 | 140 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ((𝑣 ∈ (𝑛 ∩ 𝑎) ∧ ∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣) → (𝑣 ∈ 𝑛 ∧ ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣))) |
| 142 | 141 | reximdv2 3014 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (∃𝑣 ∈ (𝑛 ∩ 𝑎)∀𝑧 ∈ (𝑛 ∩ 𝑎) ¬ 𝑧𝑠𝑣 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 143 | 60, 142 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣) |
| 144 | 143 | exp32 631 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → (𝑎𝑊𝑠 → (𝑦 ∈ 𝑎 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣))) |
| 145 | 144 | exlimdv 1861 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → (∃𝑠 𝑎𝑊𝑠 → (𝑦 ∈ 𝑎 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣))) |
| 146 | 3, 145 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → (𝑎 ∈ dom 𝑊 → (𝑦 ∈ 𝑎 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣))) |
| 147 | 146 | rexlimdv 3030 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → (∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 148 | 45, 147 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛)) → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣) |
| 149 | 148 | expr 643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ⊆ 𝑋) → (𝑦 ∈ 𝑛 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 150 | 149 | exlimdv 1861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ⊆ 𝑋) → (∃𝑦 𝑦 ∈ 𝑛 → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 151 | 39, 150 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ⊆ 𝑋) → (𝑛 ≠ ∅ → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 152 | 151 | expimpd 629 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅) → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 153 | 152 | alrimiv 1855 |
. . . . . 6
⊢ (𝜑 → ∀𝑛((𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅) → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 154 | | df-fr 5073 |
. . . . . 6
⊢ (∪ ran 𝑊 Fr 𝑋 ↔ ∀𝑛((𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅) → ∃𝑣 ∈ 𝑛 ∀𝑤 ∈ 𝑛 ¬ 𝑤∪ ran 𝑊 𝑣)) |
| 155 | 153, 154 | sylibr 224 |
. . . . 5
⊢ (𝜑 → ∪ ran 𝑊 Fr 𝑋) |
| 156 | 1 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑋 ↔ 𝑤 ∈ ∪ dom
𝑊) |
| 157 | | eluni2 4440 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ∪ dom 𝑊 ↔ ∃𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏) |
| 158 | 156, 157 | bitri 264 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑋 ↔ ∃𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏) |
| 159 | 44, 158 | anbi12i 733 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ↔ (∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏)) |
| 160 | | reeanv 3107 |
. . . . . . . 8
⊢
(∃𝑎 ∈ dom
𝑊∃𝑏 ∈ dom 𝑊(𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏) ↔ (∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏)) |
| 161 | 159, 160 | bitr4i 267 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ↔ ∃𝑎 ∈ dom 𝑊∃𝑏 ∈ dom 𝑊(𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) |
| 162 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑏 ∈ V |
| 163 | 162 | eldm 5321 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ dom 𝑊 ↔ ∃𝑡 𝑏𝑊𝑡) |
| 164 | 3, 163 | anbi12i 733 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊) ↔ (∃𝑠 𝑎𝑊𝑠 ∧ ∃𝑡 𝑏𝑊𝑡)) |
| 165 | | eeanv 2182 |
. . . . . . . . . 10
⊢
(∃𝑠∃𝑡(𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡) ↔ (∃𝑠 𝑎𝑊𝑠 ∧ ∃𝑡 𝑏𝑊𝑡)) |
| 166 | 164, 165 | bitr4i 267 |
. . . . . . . . 9
⊢ ((𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊) ↔ ∃𝑠∃𝑡(𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) |
| 167 | 83 | simprd 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → (𝑡 We 𝑏 ∧ ∀𝑦 ∈ 𝑏 [(◡𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 168 | 167 | simpld 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑡 We 𝑏) |
| 169 | 168 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑡 We 𝑏) |
| 170 | | weso 5105 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 We 𝑏 → 𝑡 Or 𝑏) |
| 171 | 169, 170 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑡 Or 𝑏) |
| 172 | | simprl 794 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑎 ⊆ 𝑏) |
| 173 | | simplrl 800 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑦 ∈ 𝑎) |
| 174 | 172, 173 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑦 ∈ 𝑏) |
| 175 | | simplrr 801 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ 𝑏) |
| 176 | | solin 5058 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 Or 𝑏 ∧ (𝑦 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏)) → (𝑦𝑡𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑡𝑦)) |
| 177 | 171, 174,
175, 176 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑦𝑡𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑡𝑦)) |
| 178 | 21 | relelrni 5363 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏𝑊𝑡 → 𝑡 ∈ ran 𝑊) |
| 179 | 178 | ad2antll 765 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑡 ∈ ran 𝑊) |
| 180 | 179 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑡 ∈ ran 𝑊) |
| 181 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ran 𝑊 → 𝑡 ⊆ ∪ ran
𝑊) |
| 182 | 180, 181 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑡 ⊆ ∪ ran
𝑊) |
| 183 | 182 | ssbrd 4696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑦𝑡𝑤 → 𝑦∪ ran 𝑊 𝑤)) |
| 184 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑦 = 𝑤 → 𝑦 = 𝑤)) |
| 185 | 182 | ssbrd 4696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑤𝑡𝑦 → 𝑤∪ ran 𝑊 𝑦)) |
| 186 | 183, 184,
185 | 3orim123d 1407 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → ((𝑦𝑡𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑡𝑦) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦))) |
| 187 | 177, 186 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)) |
| 188 | 49 | adantrr 753 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑠 We 𝑎) |
| 189 | 188 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑠 We 𝑎) |
| 190 | | weso 5105 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 We 𝑎 → 𝑠 Or 𝑎) |
| 191 | 189, 190 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑠 Or 𝑎) |
| 192 | | simplrl 800 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑦 ∈ 𝑎) |
| 193 | | simprl 794 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑏 ⊆ 𝑎) |
| 194 | | simplrr 801 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ 𝑏) |
| 195 | 193, 194 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑤 ∈ 𝑎) |
| 196 | | solin 5058 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 Or 𝑎 ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎)) → (𝑦𝑠𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑠𝑦)) |
| 197 | 191, 192,
195, 196 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑦𝑠𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑠𝑦)) |
| 198 | 21 | relelrni 5363 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎𝑊𝑠 → 𝑠 ∈ ran 𝑊) |
| 199 | 198 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑠 ∈ ran 𝑊) |
| 200 | 199 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑠 ∈ ran 𝑊) |
| 201 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ran 𝑊 → 𝑠 ⊆ ∪ ran
𝑊) |
| 202 | 200, 201 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑠 ⊆ ∪ ran
𝑊) |
| 203 | 202 | ssbrd 4696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑦𝑠𝑤 → 𝑦∪ ran 𝑊 𝑤)) |
| 204 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑦 = 𝑤 → 𝑦 = 𝑤)) |
| 205 | 202 | ssbrd 4696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑤𝑠𝑦 → 𝑤∪ ran 𝑊 𝑦)) |
| 206 | 203, 204,
205 | 3orim123d 1407 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → ((𝑦𝑠𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤𝑠𝑦) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦))) |
| 207 | 197, 206 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)) |
| 208 | 128 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) → ((𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) ∨ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))))) |
| 209 | 187, 207,
208 | mpjaodan 827 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏)) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)) |
| 210 | 209 | exp31 630 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡) → ((𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)))) |
| 211 | 210 | exlimdvv 1862 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑠∃𝑡(𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡) → ((𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)))) |
| 212 | 166, 211 | syl5bi 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊) → ((𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)))) |
| 213 | 212 | rexlimdvv 3037 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊∃𝑏 ∈ dom 𝑊(𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦))) |
| 214 | 161, 213 | syl5bi 232 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦))) |
| 215 | 214 | ralrimivv 2970 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦)) |
| 216 | | dfwe2 6981 |
. . . . 5
⊢ (∪ ran 𝑊 We 𝑋 ↔ (∪ ran
𝑊 Fr 𝑋 ∧ ∀𝑦 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑦∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤∪ ran 𝑊 𝑦))) |
| 217 | 155, 215,
216 | sylanbrc 698 |
. . . 4
⊢ (𝜑 → ∪ ran 𝑊 We 𝑋) |
| 218 | 4 | fpwwe2cbv 9452 |
. . . . . . . . . . . . 13
⊢ 𝑊 = {〈𝑧, 𝑡〉 ∣ ((𝑧 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑧 × 𝑧)) ∧ (𝑡 We 𝑧 ∧ ∀𝑤 ∈ 𝑧 [(◡𝑡 “ {𝑤}) / 𝑏](𝑏𝐹(𝑡 ∩ (𝑏 × 𝑏))) = 𝑤))} |
| 219 | 5 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝐴 ∈ V) |
| 220 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → 𝑎𝑊𝑠) |
| 221 | 218, 219,
220 | fpwwe2lem3 9455 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎𝑊𝑠) ∧ 𝑦 ∈ 𝑎) → ((◡𝑠 “ {𝑦})𝐹(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) = 𝑦) |
| 222 | 221 | anasss 679 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ((◡𝑠 “ {𝑦})𝐹(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) = 𝑦) |
| 223 | | cnvimass 5485 |
. . . . . . . . . . . . 13
⊢ (◡∪ ran 𝑊 “ {𝑦}) ⊆ dom ∪
ran 𝑊 |
| 224 | 5, 17 | ssexd 4805 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ V) |
| 225 | | xpexg 6960 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V) |
| 226 | 224, 224,
225 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 × 𝑋) ∈ V) |
| 227 | 226, 37 | ssexd 4805 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∪ ran 𝑊 ∈ V) |
| 228 | 227 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ∪ ran
𝑊 ∈
V) |
| 229 | | dmexg 7097 |
. . . . . . . . . . . . . 14
⊢ (∪ ran 𝑊 ∈ V → dom ∪ ran 𝑊 ∈ V) |
| 230 | 228, 229 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → dom ∪
ran 𝑊 ∈
V) |
| 231 | | ssexg 4804 |
. . . . . . . . . . . . 13
⊢ (((◡∪ ran 𝑊 “ {𝑦}) ⊆ dom ∪
ran 𝑊 ∧ dom ∪ ran 𝑊 ∈ V) → (◡∪ ran 𝑊 “ {𝑦}) ∈ V) |
| 232 | 223, 230,
231 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (◡∪ ran 𝑊 “ {𝑦}) ∈ V) |
| 233 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (◡∪ ran 𝑊 “ {𝑦}) → 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) |
| 234 | | olc 399 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑦 → (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) |
| 235 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧∪ ran
𝑊 𝑤 ↔ 〈𝑧, 𝑤〉 ∈ ∪
ran 𝑊) |
| 236 | | eluni2 4440 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑧, 𝑤〉 ∈ ∪ ran 𝑊 ↔ ∃𝑡 ∈ ran 𝑊〈𝑧, 𝑤〉 ∈ 𝑡) |
| 237 | 235, 236 | bitri 264 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧∪ ran
𝑊 𝑤 ↔ ∃𝑡 ∈ ran 𝑊〈𝑧, 𝑤〉 ∈ 𝑡) |
| 238 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧𝑡𝑤 ↔ 〈𝑧, 𝑤〉 ∈ 𝑡) |
| 239 | 85 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑡 ⊆ (𝑏 × 𝑏)) |
| 240 | 239 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → 𝑧(𝑏 × 𝑏)𝑤)) |
| 241 | | brxp 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑧(𝑏 × 𝑏)𝑤 ↔ (𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏)) |
| 242 | 241 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑧(𝑏 × 𝑏)𝑤 → 𝑧 ∈ 𝑏) |
| 243 | 240, 242 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → 𝑧 ∈ 𝑏)) |
| 244 | 20 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → 𝑠 ⊆ (𝑎 × 𝑎)) |
| 245 | 244 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → (𝑤𝑠𝑦 → 𝑤(𝑎 × 𝑎)𝑦)) |
| 246 | 245 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ 𝑤𝑠𝑦) → 𝑤(𝑎 × 𝑎)𝑦) |
| 247 | | brxp 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑤(𝑎 × 𝑎)𝑦 ↔ (𝑤 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) |
| 248 | 247 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤(𝑎 × 𝑎)𝑦 → 𝑤 ∈ 𝑎) |
| 249 | 246, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ 𝑤𝑠𝑦) → 𝑤 ∈ 𝑎) |
| 250 | 249 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ 𝑤𝑠𝑦) → (𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
| 251 | | elequ1 1997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎)) |
| 252 | 251 | biimprd 238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑤 = 𝑦 → (𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
| 253 | 252 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ 𝑤 = 𝑦) → (𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
| 254 | 250, 253 | jaodan 826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎)) |
| 255 | 254 | impr 649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) → 𝑤 ∈ 𝑎) |
| 256 | 255 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑤 ∈ 𝑎) |
| 257 | 243, 256 | jctird 567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → (𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎))) |
| 258 | | brxp 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑧(𝑏 × 𝑎)𝑤 ↔ (𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎)) |
| 259 | 257, 258 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → 𝑧(𝑏 × 𝑎)𝑤)) |
| 260 | 259 | ancld 576 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → (𝑧𝑡𝑤 ∧ 𝑧(𝑏 × 𝑎)𝑤))) |
| 261 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) |
| 262 | 261 | breqd 4664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑠𝑤 ↔ 𝑧(𝑡 ∩ (𝑏 × 𝑎))𝑤)) |
| 263 | | brin 4704 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧(𝑡 ∩ (𝑏 × 𝑎))𝑤 ↔ (𝑧𝑡𝑤 ∧ 𝑧(𝑏 × 𝑎)𝑤)) |
| 264 | 262, 263 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑠𝑤 ↔ (𝑧𝑡𝑤 ∧ 𝑧(𝑏 × 𝑎)𝑤))) |
| 265 | 260, 264 | sylibrd 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎)))) → (𝑧𝑡𝑤 → 𝑧𝑠𝑤)) |
| 266 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))) |
| 267 | 266, 119 | syl6eqss 3655 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → 𝑡 ⊆ 𝑠) |
| 268 | 267 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) ∧ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏)))) → (𝑧𝑡𝑤 → 𝑧𝑠𝑤)) |
| 269 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) → ((𝑎 ⊆ 𝑏 ∧ 𝑠 = (𝑡 ∩ (𝑏 × 𝑎))) ∨ (𝑏 ⊆ 𝑎 ∧ 𝑡 = (𝑠 ∩ (𝑎 × 𝑏))))) |
| 270 | 265, 268,
269 | mpjaodan 827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) → (𝑧𝑡𝑤 → 𝑧𝑠𝑤)) |
| 271 | 238, 270 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) ∧ ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) ∧ 𝑦 ∈ 𝑎)) → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤)) |
| 272 | 271 | exp32 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑏𝑊𝑡)) → ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) → (𝑦 ∈ 𝑎 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤)))) |
| 273 | 272 | expr 643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → (𝑏𝑊𝑡 → ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) → (𝑦 ∈ 𝑎 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤))))) |
| 274 | 273 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑎𝑊𝑠) → (𝑦 ∈ 𝑎 → ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) → (𝑏𝑊𝑡 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤))))) |
| 275 | 274 | impr 649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ((𝑤𝑠𝑦 ∨ 𝑤 = 𝑦) → (𝑏𝑊𝑡 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤)))) |
| 276 | 275 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (𝑏𝑊𝑡 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤))) |
| 277 | 276 | exlimdv 1861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (∃𝑏 𝑏𝑊𝑡 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤))) |
| 278 | 71, 277 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (𝑡 ∈ ran 𝑊 → (〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤))) |
| 279 | 278 | rexlimdv 3030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (∃𝑡 ∈ ran 𝑊〈𝑧, 𝑤〉 ∈ 𝑡 → 𝑧𝑠𝑤)) |
| 280 | 237, 279 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤)) |
| 281 | 234, 280 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑤 = 𝑦) → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤)) |
| 282 | 281 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑤 = 𝑦 → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤))) |
| 283 | 282 | alrimiv 1855 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ∀𝑤(𝑤 = 𝑦 → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤))) |
| 284 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
| 285 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑦 → (𝑧∪ ran 𝑊 𝑤 ↔ 𝑧∪ ran 𝑊 𝑦)) |
| 286 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑦 → (𝑧𝑠𝑤 ↔ 𝑧𝑠𝑦)) |
| 287 | 285, 286 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑦 → ((𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤) ↔ (𝑧∪ ran 𝑊 𝑦 → 𝑧𝑠𝑦))) |
| 288 | 284, 287 | ceqsalv 3233 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤(𝑤 = 𝑦 → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤)) ↔ (𝑧∪ ran 𝑊 𝑦 → 𝑧𝑠𝑦)) |
| 289 | 283, 288 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑧∪ ran 𝑊 𝑦 → 𝑧𝑠𝑦)) |
| 290 | 198 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑠 ∈ ran 𝑊) |
| 291 | 290, 201 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → 𝑠 ⊆ ∪ ran
𝑊) |
| 292 | 291 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑧𝑠𝑦 → 𝑧∪ ran 𝑊 𝑦)) |
| 293 | 289, 292 | impbid 202 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑧∪ ran 𝑊 𝑦 ↔ 𝑧𝑠𝑦)) |
| 294 | | vex 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
| 295 | 294 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ V → (𝑧 ∈ (◡∪ ran 𝑊 “ {𝑦}) ↔ 𝑧∪ ran 𝑊 𝑦)) |
| 296 | 284, 295 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (◡∪ ran 𝑊 “ {𝑦}) ↔ 𝑧∪ ran 𝑊 𝑦) |
| 297 | 294 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ V → (𝑧 ∈ (◡𝑠 “ {𝑦}) ↔ 𝑧𝑠𝑦)) |
| 298 | 284, 297 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (◡𝑠 “ {𝑦}) ↔ 𝑧𝑠𝑦) |
| 299 | 293, 296,
298 | 3bitr4g 303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (𝑧 ∈ (◡∪ ran 𝑊 “ {𝑦}) ↔ 𝑧 ∈ (◡𝑠 “ {𝑦}))) |
| 300 | 299 | eqrdv 2620 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (◡∪ ran 𝑊 “ {𝑦}) = (◡𝑠 “ {𝑦})) |
| 301 | 233, 300 | sylan9eqr 2678 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → 𝑢 = (◡𝑠 “ {𝑦})) |
| 302 | 301 | sqxpeqd 5141 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → (𝑢 × 𝑢) = ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) |
| 303 | 302 | ineq2d 3814 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → (∪ ran
𝑊 ∩ (𝑢 × 𝑢)) = (∪ ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 304 | | inss2 3834 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ⊆ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) |
| 305 | | relxp 5227 |
. . . . . . . . . . . . . . . . . 18
⊢ Rel
((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) |
| 306 | | relss 5206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∪ ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ⊆ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) → (Rel ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) → Rel (∪
ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))))) |
| 307 | 304, 305,
306 | mp2 9 |
. . . . . . . . . . . . . . . . 17
⊢ Rel
(∪ ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) |
| 308 | | inss2 3834 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ⊆ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) |
| 309 | | relss 5206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ⊆ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) → (Rel ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})) → Rel (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))))) |
| 310 | 308, 305,
309 | mp2 9 |
. . . . . . . . . . . . . . . . 17
⊢ Rel
(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) |
| 311 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑤 ∈ V |
| 312 | 311 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ V → (𝑤 ∈ (◡𝑠 “ {𝑦}) ↔ 𝑤𝑠𝑦)) |
| 313 | 297, 312 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ V → ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ↔ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦))) |
| 314 | 284, 313 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ↔ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦)) |
| 315 | | orc 400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤𝑠𝑦 → (𝑤𝑠𝑦 ∨ 𝑤 = 𝑦)) |
| 316 | 315, 280 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑤𝑠𝑦) → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤)) |
| 317 | 316 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦)) → (𝑧∪ ran 𝑊 𝑤 → 𝑧𝑠𝑤)) |
| 318 | 291 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦)) → 𝑠 ⊆ ∪ ran
𝑊) |
| 319 | 318 | ssbrd 4696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦)) → (𝑧𝑠𝑤 → 𝑧∪ ran 𝑊 𝑤)) |
| 320 | 317, 319 | impbid 202 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑧𝑠𝑦 ∧ 𝑤𝑠𝑦)) → (𝑧∪ ran 𝑊 𝑤 ↔ 𝑧𝑠𝑤)) |
| 321 | 314, 320 | sylan2b 492 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ (𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦}))) → (𝑧∪ ran 𝑊 𝑤 ↔ 𝑧𝑠𝑤)) |
| 322 | 321 | pm5.32da 673 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧∪ ran 𝑊 𝑤) ↔ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧𝑠𝑤))) |
| 323 | | brinxp2 5180 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧(∪
ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))𝑤 ↔ (𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑧∪ ran 𝑊 𝑤)) |
| 324 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧(∪
ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (∪
ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 325 | | df-3an 1039 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑧∪ ran 𝑊 𝑤) ↔ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧∪ ran 𝑊 𝑤)) |
| 326 | 323, 324,
325 | 3bitr3i 290 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑧, 𝑤〉 ∈ (∪ ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ↔ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧∪ ran 𝑊 𝑤)) |
| 327 | | brinxp2 5180 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))𝑤 ↔ (𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑧𝑠𝑤)) |
| 328 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 329 | | df-3an 1039 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑧𝑠𝑤) ↔ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧𝑠𝑤)) |
| 330 | 327, 328,
329 | 3bitr3i 290 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑧, 𝑤〉 ∈ (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ↔ ((𝑧 ∈ (◡𝑠 “ {𝑦}) ∧ 𝑤 ∈ (◡𝑠 “ {𝑦})) ∧ 𝑧𝑠𝑤)) |
| 331 | 322, 326,
330 | 3bitr4g 303 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (〈𝑧, 𝑤〉 ∈ (∪
ran 𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) ↔ 〈𝑧, 𝑤〉 ∈ (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))))) |
| 332 | 307, 310,
331 | eqrelrdv 5216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → (∪ ran
𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) = (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 333 | 332 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → (∪ ran
𝑊 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))) = (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 334 | 303, 333 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → (∪ ran
𝑊 ∩ (𝑢 × 𝑢)) = (𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) |
| 335 | 301, 334 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → (𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = ((◡𝑠 “ {𝑦})𝐹(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦}))))) |
| 336 | 335 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) ∧ 𝑢 = (◡∪ ran 𝑊 “ {𝑦})) → ((𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ((◡𝑠 “ {𝑦})𝐹(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) = 𝑦)) |
| 337 | 232, 336 | sbcied 3472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → ([(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ((◡𝑠 “ {𝑦})𝐹(𝑠 ∩ ((◡𝑠 “ {𝑦}) × (◡𝑠 “ {𝑦})))) = 𝑦)) |
| 338 | 222, 337 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎𝑊𝑠 ∧ 𝑦 ∈ 𝑎)) → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦) |
| 339 | 338 | exp32 631 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎𝑊𝑠 → (𝑦 ∈ 𝑎 → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 340 | 339 | exlimdv 1861 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑠 𝑎𝑊𝑠 → (𝑦 ∈ 𝑎 → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 341 | 3, 340 | syl5bi 232 |
. . . . . . 7
⊢ (𝜑 → (𝑎 ∈ dom 𝑊 → (𝑦 ∈ 𝑎 → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 342 | 341 | rexlimdv 3030 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 343 | 44, 342 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝑋 → [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 344 | 343 | ralrimiv 2965 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦) |
| 345 | 217, 344 | jca 554 |
. . 3
⊢ (𝜑 → (∪ ran 𝑊 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 346 | 4, 5 | fpwwe2lem2 9454 |
. . 3
⊢ (𝜑 → (𝑋𝑊∪ ran 𝑊 ↔ ((𝑋 ⊆ 𝐴 ∧ ∪ ran
𝑊 ⊆ (𝑋 × 𝑋)) ∧ (∪ ran
𝑊 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡∪ ran 𝑊 “ {𝑦}) / 𝑢](𝑢𝐹(∪ ran 𝑊 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 347 | 38, 345, 346 | mpbir2and 957 |
. 2
⊢ (𝜑 → 𝑋𝑊∪ ran 𝑊) |
| 348 | 21 | releldmi 5362 |
. 2
⊢ (𝑋𝑊∪ ran 𝑊 → 𝑋 ∈ dom 𝑊) |
| 349 | 347, 348 | syl 17 |
1
⊢ (𝜑 → 𝑋 ∈ dom 𝑊) |