MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Structured version   Visualization version   GIF version

Theorem brwitnlem 7587
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r 𝑅 = (𝑂 “ (V ∖ 1𝑜))
brwitnlem.o 𝑂 Fn 𝑋
Assertion
Ref Expression
brwitnlem (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 6201 . . . . 5 (𝑂‘⟨𝐴, 𝐵⟩) ∈ V
2 dif1o 7580 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1𝑜) ↔ ((𝑂‘⟨𝐴, 𝐵⟩) ∈ V ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
31, 2mpbiran 953 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1𝑜) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
43anbi2i 730 . . 3 ((⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1𝑜)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
5 brwitnlem.o . . . 4 𝑂 Fn 𝑋
6 elpreima 6337 . . . 4 (𝑂 Fn 𝑋 → (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1𝑜)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1𝑜))))
75, 6ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1𝑜)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1𝑜)))
8 ndmfv 6218 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝑂 → (𝑂‘⟨𝐴, 𝐵⟩) = ∅)
98necon1ai 2821 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom 𝑂)
10 fndm 5990 . . . . . 6 (𝑂 Fn 𝑋 → dom 𝑂 = 𝑋)
115, 10ax-mp 5 . . . . 5 dom 𝑂 = 𝑋
129, 11syl6eleq 2711 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑋)
1312pm4.71ri 665 . . 3 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
144, 7, 133bitr4i 292 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1𝑜)) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
15 brwitnlem.r . . . 4 𝑅 = (𝑂 “ (V ∖ 1𝑜))
1615breqi 4659 . . 3 (𝐴𝑅𝐵𝐴(𝑂 “ (V ∖ 1𝑜))𝐵)
17 df-br 4654 . . 3 (𝐴(𝑂 “ (V ∖ 1𝑜))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1𝑜)))
1816, 17bitri 264 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1𝑜)))
19 df-ov 6653 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2019neeq1i 2858 . 2 ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
2114, 18, 203bitr4i 292 1 (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  c0 3915  cop 4183   class class class wbr 4653  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  cfv 5888  (class class class)co 6650  1𝑜c1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-1o 7560
This theorem is referenced by:  brgic  17711  brric  18744  brlmic  19068  hmph  21579
  Copyright terms: Public domain W3C validator