MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brric Structured version   Visualization version   Unicode version

Theorem brric 18744
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
brric  |-  ( R 
~=r  S  <->  ( R RingIso  S
)  =/=  (/) )

Proof of Theorem brric
Dummy variables  h  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ric 18718 . 2  |-  ~=r  =  ( `' RingIso  " ( _V 
\  1o ) )
2 ovex 6678 . . . . 5  |-  ( r RingHom 
s )  e.  _V
3 rabexg 4812 . . . . 5  |-  ( ( r RingHom  s )  e. 
_V  ->  { h  e.  ( r RingHom  s )  |  `' h  e.  ( s RingHom  r ) }  e.  _V )
42, 3mp1i 13 . . . 4  |-  ( ( r  e.  _V  /\  s  e.  _V )  ->  { h  e.  ( r RingHom  s )  |  `' h  e.  (
s RingHom  r ) }  e.  _V )
54rgen2a 2977 . . 3  |-  A. r  e.  _V  A. s  e. 
_V  { h  e.  ( r RingHom  s )  |  `' h  e.  ( s RingHom  r ) }  e.  _V
6 df-rngiso 18716 . . . 4  |- RingIso  =  ( r  e.  _V , 
s  e.  _V  |->  { h  e.  ( r RingHom 
s )  |  `' h  e.  ( s RingHom  r ) } )
76fnmpt2 7238 . . 3  |-  ( A. r  e.  _V  A. s  e.  _V  { h  e.  ( r RingHom  s )  |  `' h  e.  ( s RingHom  r ) }  e.  _V  -> RingIso  Fn  ( _V  X.  _V )
)
85, 7ax-mp 5 . 2  |- RingIso  Fn  ( _V  X.  _V )
91, 8brwitnlem 7587 1  |-  ( R 
~=r  S  <->  ( R RingIso  S
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    Fn wfn 5883  (class class class)co 6650   RingHom crh 18712   RingIso crs 18713    ~=r cric 18714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-rngiso 18716  df-ric 18718
This theorem is referenced by:  brric2  18745  mat1ric  20293  scmatric  20343  matcpmric  20564  pmmpric  20628
  Copyright terms: Public domain W3C validator