MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Visualization version   GIF version

Theorem cardinfima 8920
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝐵𝐴 ∈ V)
2 isinfcard 8915 . . . . . . . . . . . . 13 ((ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)) ↔ (𝐹𝑥) ∈ ran ℵ)
32bicomi 214 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ ran ℵ ↔ (ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)))
43simplbi 476 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ran ℵ → ω ⊆ (𝐹𝑥))
5 ffn 6045 . . . . . . . . . . . 12 (𝐹:𝐴⟶(ω ∪ ran ℵ) → 𝐹 Fn 𝐴)
6 fnfvelrn 6356 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
76ex 450 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ ran 𝐹))
8 fnima 6010 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
98eleq2d 2687 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → ((𝐹𝑥) ∈ (𝐹𝐴) ↔ (𝐹𝑥) ∈ ran 𝐹))
107, 9sylibrd 249 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
11 elssuni 4467 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
1210, 11syl6 35 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ⊆ (𝐹𝐴)))
1312imp 445 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
145, 13sylan 488 . . . . . . . . . . 11 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
154, 14sylan9ssr 3617 . . . . . . . . . 10 (((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) ∧ (𝐹𝑥) ∈ ran ℵ) → ω ⊆ (𝐹𝐴))
1615anasss 679 . . . . . . . . 9 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴))
1716a1i 11 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴)))
18 carduniima 8919 . . . . . . . . . 10 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
19 iscard3 8916 . . . . . . . . . 10 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
2018, 19syl6ibr 242 . . . . . . . . 9 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2120adantrd 484 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2217, 21jcad 555 . . . . . . 7 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴))))
23 isinfcard 8915 . . . . . . 7 ((ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴)) ↔ (𝐹𝐴) ∈ ran ℵ)
2422, 23syl6ib 241 . . . . . 6 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (𝐹𝐴) ∈ ran ℵ))
2524exp4d 637 . . . . 5 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))))
2625imp 445 . . . 4 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ)))
2726rexlimdv 3030 . . 3 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))
2827expimpd 629 . 2 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
291, 28syl 17 1 (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cun 3572  wss 3574   cuni 4436  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  ωcom 7065  cardccrd 8761  cale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  alephfplem4  8930
  Copyright terms: Public domain W3C validator