| Step | Hyp | Ref
| Expression |
| 1 | | cfval 9069 |
. . . 4
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 2 | | cardon 8770 |
. . . . . . . . 9
⊢
(card‘𝑦)
∈ On |
| 3 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
| 4 | 2, 3 | mpbiri 248 |
. . . . . . . 8
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
| 5 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
| 6 | 5 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑥 ∈ On) |
| 7 | 6 | abssi 3677 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On |
| 8 | | cflem 9068 |
. . . . . 6
⊢ (𝐴 ∈ On → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 9 | | abn0 3954 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅ ↔ ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 10 | 8, 9 | sylibr 224 |
. . . . 5
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) |
| 11 | | onint 6995 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 12 | 7, 10, 11 | sylancr 695 |
. . . 4
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 13 | 1, 12 | eqeltrd 2701 |
. . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
| 14 | | fvex 6201 |
. . . 4
⊢
(cf‘𝐴) ∈
V |
| 15 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦))) |
| 16 | 15 | anbi1d 741 |
. . . . 5
⊢ (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
| 17 | 16 | exbidv 1850 |
. . . 4
⊢ (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)))) |
| 18 | 14, 17 | elab 3350 |
. . 3
⊢
((cf‘𝐴) ∈
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 19 | 13, 18 | sylib 208 |
. 2
⊢ (𝐴 ∈ On → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
| 20 | | simplr 792 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (cf‘𝐴) = (card‘𝑦)) |
| 21 | | onss 6990 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 22 | | sstr 3611 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑦 ⊆ On) |
| 23 | 21, 22 | sylan2 491 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 ∈ On) → 𝑦 ⊆ On) |
| 24 | 23 | ancoms 469 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ On) |
| 25 | 24 | ad2ant2r 783 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → 𝑦 ⊆ On) |
| 26 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 27 | | onssnum 8863 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom
card) |
| 28 | 26, 27 | mpan 706 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ On → 𝑦 ∈ dom
card) |
| 29 | | cardid2 8779 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ⊆ On →
(card‘𝑦) ≈
𝑦) |
| 31 | 30 | adantl 482 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(card‘𝑦) ≈
𝑦) |
| 32 | | breq1 4656 |
. . . . . . . . 9
⊢
((cf‘𝐴) =
(card‘𝑦) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
| 33 | 32 | adantr 481 |
. . . . . . . 8
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦)) |
| 34 | 31, 33 | mpbird 247 |
. . . . . . 7
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) →
(cf‘𝐴) ≈ 𝑦) |
| 35 | | bren 7964 |
. . . . . . 7
⊢
((cf‘𝐴)
≈ 𝑦 ↔
∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 36 | 34, 35 | sylib 208 |
. . . . . 6
⊢
(((cf‘𝐴) =
(card‘𝑦) ∧ 𝑦 ⊆ On) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 37 | 20, 25, 36 | syl2anc 693 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦) |
| 38 | | f1of1 6136 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–1-1→𝑦) |
| 39 | | f1ss 6106 |
. . . . . . . . . . . 12
⊢ ((𝑓:(cf‘𝐴)–1-1→𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 40 | 39 | ancoms 469 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 41 | 38, 40 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 42 | 41 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 43 | 42 | 3adant1 1079 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → 𝑓:(cf‘𝐴)–1-1→𝐴) |
| 44 | | f1ofo 6144 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → 𝑓:(cf‘𝐴)–onto→𝑦) |
| 45 | | foelrn 6378 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → ∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤)) |
| 46 | | sseq2 3627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
| 47 | 46 | biimpcd 239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝑠 → (𝑠 = (𝑓‘𝑤) → 𝑧 ⊆ (𝑓‘𝑤))) |
| 48 | 47 | reximdv 3016 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ 𝑠 → (∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓‘𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 49 | 45, 48 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘𝐴)–onto→𝑦 ∧ 𝑠 ∈ 𝑦) → (𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 50 | 49 | rexlimdva 3031 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 51 | 50 | ralimdv 2963 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘𝐴)–onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 52 | 44, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 53 | 52 | impcom 446 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 54 | 53 | adantll 750 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 55 | 54 | 3adant1 1079 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) |
| 56 | 43, 55 | jca 554 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto→𝑦) → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 57 | 56 | 3expia 1267 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (𝑓:(cf‘𝐴)–1-1-onto→𝑦 → (𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 58 | 57 | eximdv 1846 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → (∃𝑓 𝑓:(cf‘𝐴)–1-1-onto→𝑦 → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 59 | 37, 58 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 60 | 59 | expl 648 |
. . 3
⊢ (𝐴 ∈ On →
(((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 61 | 60 | exlimdv 1861 |
. 2
⊢ (𝐴 ∈ On → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 62 | 19, 61 | mpd 15 |
1
⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |