| Step | Hyp | Ref
| Expression |
| 1 | | cicrcl 16463 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) |
| 2 | | ciclcl 16462 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
| 3 | | eqid 2622 |
. . . . 5
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
| 4 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 5 | | simpl 473 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 6 | | simpr 477 |
. . . . . 6
⊢ ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) |
| 7 | 6 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶)) |
| 8 | | simpl 473 |
. . . . . 6
⊢ ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶)) |
| 9 | 8 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶)) |
| 10 | 3, 4, 5, 7, 9 | cic 16459 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))) |
| 11 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
| 12 | 4, 11, 5, 7, 9, 3 | isoval 16425 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = dom (𝑅(Inv‘𝐶)𝑆)) |
| 13 | 4, 11, 5, 9, 7 | invsym2 16423 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → ◡(𝑆(Inv‘𝐶)𝑅) = (𝑅(Inv‘𝐶)𝑆)) |
| 14 | 13 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Inv‘𝐶)𝑆) = ◡(𝑆(Inv‘𝐶)𝑅)) |
| 15 | 14 | dmeqd 5326 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = dom ◡(𝑆(Inv‘𝐶)𝑅)) |
| 16 | | df-rn 5125 |
. . . . . . . . . . . 12
⊢ ran
(𝑆(Inv‘𝐶)𝑅) = dom ◡(𝑆(Inv‘𝐶)𝑅) |
| 17 | 15, 16 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅)) |
| 18 | 12, 17 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅)) |
| 19 | 18 | eleq2d 2687 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ 𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅))) |
| 20 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 21 | | elrng 5314 |
. . . . . . . . . 10
⊢ (𝑓 ∈ V → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓)) |
| 22 | 20, 21 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓)) |
| 23 | 19, 22 | bitrd 268 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓)) |
| 24 | | df-br 4654 |
. . . . . . . . . 10
⊢ (𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ 〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅)) |
| 25 | 24 | exbii 1774 |
. . . . . . . . 9
⊢
(∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ∃𝑔〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅)) |
| 26 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
| 27 | 26, 20 | opeldm 5328 |
. . . . . . . . . . . 12
⊢
(〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅)) |
| 28 | 4, 11, 5, 9, 7, 3 | isoval 16425 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Iso‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅)) |
| 29 | 28 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑆(Inv‘𝐶)𝑅) = (𝑆(Iso‘𝐶)𝑅)) |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) ↔ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅))) |
| 31 | 5 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝐶 ∈ Cat) |
| 32 | 9 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆 ∈ (Base‘𝐶)) |
| 33 | 7 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑅 ∈ (Base‘𝐶)) |
| 34 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) |
| 35 | 3, 4, 31, 32, 33, 34 | brcici 16460 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆( ≃𝑐 ‘𝐶)𝑅) |
| 36 | 35 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑆(Iso‘𝐶)𝑅) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 37 | 30, 36 | sylbid 230 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 38 | 37 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 39 | 27, 38 | syl 17 |
. . . . . . . . . . 11
⊢
(〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 40 | 39 | exlimiv 1858 |
. . . . . . . . . 10
⊢
(∃𝑔〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 41 | 40 | com12 32 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔〈𝑔, 𝑓〉 ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 42 | 25, 41 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 43 | 23, 42 | sylbid 230 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 44 | 43 | com12 32 |
. . . . . 6
⊢ (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 45 | 44 | exlimiv 1858 |
. . . . 5
⊢
(∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 46 | 45 | com12 32 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 47 | 10, 46 | sylbid 230 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 48 | 47 | impancom 456 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆( ≃𝑐 ‘𝐶)𝑅)) |
| 49 | 1, 2, 48 | mp2and 715 |
1
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑆( ≃𝑐 ‘𝐶)𝑅) |