| Step | Hyp | Ref
| Expression |
| 1 | | invfval.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 2 | | isofval 16417 |
. . . . 5
⊢ (𝐶 ∈ Cat →
(Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → (Iso‘𝐶) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶))) |
| 4 | | isoval.n |
. . . 4
⊢ 𝐼 = (Iso‘𝐶) |
| 5 | | invfval.n |
. . . . 5
⊢ 𝑁 = (Inv‘𝐶) |
| 6 | 5 | coeq2i 5282 |
. . . 4
⊢ ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁) = ((𝑧 ∈ V ↦ dom 𝑧) ∘ (Inv‘𝐶)) |
| 7 | 3, 4, 6 | 3eqtr4g 2681 |
. . 3
⊢ (𝜑 → 𝐼 = ((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)) |
| 8 | 7 | oveqd 6667 |
. 2
⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌)) |
| 9 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) |
| 10 | | ovex 6678 |
. . . . . . 7
⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V |
| 11 | 10 | inex1 4799 |
. . . . . 6
⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 12 | 9, 11 | fnmpt2i 7239 |
. . . . 5
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵) |
| 13 | | invfval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
| 14 | | invfval.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 15 | | invfval.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 16 | | eqid 2622 |
. . . . . . 7
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
| 17 | 13, 5, 1, 14, 15, 16 | invffval 16418 |
. . . . . 6
⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 18 | 17 | fneq1d 5981 |
. . . . 5
⊢ (𝜑 → (𝑁 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn (𝐵 × 𝐵))) |
| 19 | 12, 18 | mpbiri 248 |
. . . 4
⊢ (𝜑 → 𝑁 Fn (𝐵 × 𝐵)) |
| 20 | | opelxpi 5148 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 21 | 14, 15, 20 | syl2anc 693 |
. . . 4
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 22 | | fvco2 6273 |
. . . 4
⊢ ((𝑁 Fn (𝐵 × 𝐵) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 23 | 19, 21, 22 | syl2anc 693 |
. . 3
⊢ (𝜑 → (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉))) |
| 24 | | df-ov 6653 |
. . 3
⊢ (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = (((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)‘〈𝑋, 𝑌〉) |
| 25 | | ovex 6678 |
. . . . 5
⊢ (𝑋𝑁𝑌) ∈ V |
| 26 | | dmeq 5324 |
. . . . . 6
⊢ (𝑧 = (𝑋𝑁𝑌) → dom 𝑧 = dom (𝑋𝑁𝑌)) |
| 27 | | eqid 2622 |
. . . . . 6
⊢ (𝑧 ∈ V ↦ dom 𝑧) = (𝑧 ∈ V ↦ dom 𝑧) |
| 28 | 25 | dmex 7099 |
. . . . . 6
⊢ dom
(𝑋𝑁𝑌) ∈ V |
| 29 | 26, 27, 28 | fvmpt 6282 |
. . . . 5
⊢ ((𝑋𝑁𝑌) ∈ V → ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌)) |
| 30 | 25, 29 | ax-mp 5 |
. . . 4
⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = dom (𝑋𝑁𝑌) |
| 31 | | df-ov 6653 |
. . . . 5
⊢ (𝑋𝑁𝑌) = (𝑁‘〈𝑋, 𝑌〉) |
| 32 | 31 | fveq2i 6194 |
. . . 4
⊢ ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑋𝑁𝑌)) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 33 | 30, 32 | eqtr3i 2646 |
. . 3
⊢ dom
(𝑋𝑁𝑌) = ((𝑧 ∈ V ↦ dom 𝑧)‘(𝑁‘〈𝑋, 𝑌〉)) |
| 34 | 23, 24, 33 | 3eqtr4g 2681 |
. 2
⊢ (𝜑 → (𝑋((𝑧 ∈ V ↦ dom 𝑧) ∘ 𝑁)𝑌) = dom (𝑋𝑁𝑌)) |
| 35 | 8, 34 | eqtrd 2656 |
1
⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |